Mathematical modelling of the residence time distribution of CO2 tracer in a three-phase micro-packed bed reactor: An experimental analysis

Authors

DOI:

https://doi.org/10.33448/rsd-v10i9.17425

Keywords:

Experimental; Modelling; Reactor; Residence time; Tracer.

Abstract

This study reports the residence time distribution (RTD) using CO2 as tracer in Three-phase micro-packed bed (TP-mPB) reactor. Experimental measurements were obtained at the inlet and at the outlet from TP-mPB reactor using the injection of small amount (3%) of CO2 tracer inside the sweep gas current. The dynamic model characterizes a diffusion-adsorption process of CO2 tracer in terms of mass transfer phenomena (external and internal). The mathematical model was validated against a set of experimental data where simulated results of CO2 tracer adequately matched the experimental measures at the outlet of the micro-packed bed.

References

Anjos, E. B., Oliveira, C. B. & Silva, J. D. (2019). Dynamic analysis to produce hydrogen in a fixed bed catalytic reactor by the steam reforming of toluene. Chemical Engineering Transactions, 74, 553-558. https://doi.org/10.3303/CET1974093.

Anjos, E. B., Carvalho, J. D. C. G. & Silva, J. D. (2017). Dynamic analysis of a three-phase reactor of fixed bed for petroleum and petrochemical industry. In Proceedings of the 24nd International Congress of Mechanical Engineering - COBEM 2017, Curitiba, Brazil, 1-10.

Anjos E. B. & Silva, J. D. (2019). Numerical simulation of the heat transfer for a three-phase reactor of fixed bed. Latin IEEE Amer Trans, 17, 788-795. https://doi.org/10.1109/TLA.2019.8891947.

Bonfim, C. E. S., Pinto, J. C. C. S. & Poubel, W. M. (2020). CFD simulation for the analysis of a contaminated environment with chemical war: influence of flow profiles and determination of risk areas over a reservoir for water distribution. Braz. J. of Develop. 6, 25585-25608. https://doi.org/10.34117/bjdv6n5-131.

Chang, A. C., Chuang, S. C., Gray, M. & Soong, Y. (2003). In-Situ Infrared Study of CO2 Adsorption on SBA-15 Grafted with -(Aminopropyl) triethoxysilane. Energy & Fuels, 17, 468-473. https://doi.org/10.1021/ef020176h.

Chen, S. J., Fu, Y., Huang, Y. X., Tao, Z. C. & Zhu, M. (2016). Experimental investigation of CO2 separation by adsorption methods in natural gas purification. Appl Energy, 179, 329-337. https://doi.org/10.1016/j.apenergy.2016.06.146.

Cruz, B. M. & Silva, J. D. (2017). A two-dimensional mathematical model for the catalytic steam reforming of methane in both conventional fixed-bed and fixed-bed membrane reactors for the Production of hydrogen. Int J Hydrogen Energy, 42, 23670-23690. https://doi.org/10.1016/j.ijhydene.2017.03.019.

Dias, V. F. & Silva, J. D. (2020). Mathematical modelling of the solar-driven steam reforming of methanol for a solar thermochemical micro - fluidized bed reformer: thermal performance and thermochemical conversion. J Braz Soc Mech Sci Eng, 42, 447. https://doi.org/10.1007/s40430-020-02529-6.

Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H. & Srivastava, R. D. (2018). Advances in CO2 capture technology-The U.S. Department of Energy's Carbon Sequestration Program. Int J Greenh Gas Control, 2, 9-20. https://doi.org/10.1016/S1750-5836 (07) 00094-1.

Gray, M. L., Champagne, K. J., Fauth, D., Baltrus, J. P. & Pennline, H. (2008). Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide. Int. J. Greenh Gas Control, 2, 3-8. https://doi.org/10.1016/S1750-5836(07)00088-6.

Joss, L., Gazzani, M. & Mazzotti, M. (2017). Rational design of temperature swing adsorption cycles for post-combustion CO2 capture. Chem Eng Sci, 158, 709-716. https://doi.org/10.1016/j.ces. 2016.10.013.

Kongnoo, A., Tontisirin, S., Worathanakul, P. & Phalakornkule, C. (2017). Surface characteristics and CO2 adsorption capacities of acid-activated zeolite 13X prepared from palm oil mill fly ash. Fuel, 193,385-394. https://doi.org/10.1016/j.fuel.2016.12.087.

Medeiros, J. P. F., Dias, V. F., Silva, J. M. & Silva, J. D. (2021). Thermochemical Performance Analysis of the Steam Reforming of Methane in a Fixed Bed Membrane Reformer: A Modelling and Simulation Study. Membranes, 11, 6, 1-26. https://doi.org/10.3390/ membranes 11010006.

Silva, J. D. (2011). Dynamic evaluation for liquid tracer in a trickle bed reactor. Jour. Braz. Soc. Mech. Sci. Eng, 33, 272-277. https://doi.org/10.1590/S1678-58782011000300002.

Moulijn, J. A., Makkee M & Berger, R. J. (2016). Catalyst testing in multiphase micro-packed-bed reactors; criterion for radial mass transport. Catal. Today, 259, 354-359. https://doi.org/10.1016/j.cattod.2015.05.025.

Oliveira, G. H. H., Oliveira, A. P. L. R., Souza, M. V. C., Neves, R. F. & Botelho, F. M. (2020). Water adsorption isotherms of coffee blends. Braz. J. of Develop., 6, 20988-20997. https://doi.org/10.34117/bjdv6n4-319.

Panariello, L., Mazzei, L. A. & Gavriilidis, A. (2018). Modelling the synthesis of nanoparticles in continuous microreactors: The role of diffusion and residence time distribution on nanoparticle characteristics. Chem. Eng. Journal, 350, 1144-1154. https://doi.org/10.1016/j.cej.2018.03.167.

Rios, R. B., Correia, L. S., Bastos-Neto, M., Torres, A. E. B., Hatimondi, S. A., Ribeiro, A. M., Rodrigues, A. E., Cavalcante Jr, C. L. & de Azevedo, D. C. S. (2014). Evaluation of carbon dioxide-nitrogen separation through fixed bed measurements and simulations. Adsorption, 20, 945-957. https://doi.org/10.1007/s10450-014-9639-3.

Shen, C., Yu, J., Li, P., Grande, C. A. & Rodrigues, A. E. (2011). Capture of CO2 from flue gas by vacuum pressure swing adsorption using activated carbon beads. Adsorption, 17, 179-188. https://doi.org/10.1007/s10450-010-9298-y.

Silva, P. B. A., Carvalho, J. D. C. G. & Silva, J. D. (2019). Hydrogen adsorption on Ni/-Aℓ2O3 in a fixed-bed adsorber: Experimental validation and numerical modelling. Int J Hydrogen Energy, 44, 304-317. https://doi.org/10.1016/j.ijhydene.2018.07.203.

Reis, M. C., Sphaier, L. A., Alves, L. S. B. & Cotta, R. M. (2018). Approximate analytical methodology for calculating friction factors in flow through polygonal cross section ducts. J Braz Soc Mech Sci Eng, 40, 76. https://doi.org/10.1007/s40430-018-1019-6

Downloads

Published

25/07/2021

How to Cite

SILVA, J. M. da .; DIAS, V. da F. .; SILVA, J. D. da . Mathematical modelling of the residence time distribution of CO2 tracer in a three-phase micro-packed bed reactor: An experimental analysis. Research, Society and Development, [S. l.], v. 10, n. 9, p. e23210917425, 2021. DOI: 10.33448/rsd-v10i9.17425. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17425. Acesso em: 26 sep. 2021.

Issue

Section

Engineerings