Modelagem matemática da distribuição do tempo de residência do traçador de CO2 em um reator trifásico de leito micro-empacotado: Uma análise experimental
DOI:
https://doi.org/10.33448/rsd-v10i9.17425Palavras-chave:
Experimental; Modelagem; Reator; Tempo de residência; Traçador.Resumo
Este estudo descreve a distribuição do tempo de residência (DTR) usando CO2 como um traçador no Reator Trifásico de Leito Micro-Empacotado (TL-mE). As medições experimentais foram obtidas na entrada e na saída do reator TL-mE usando a injeção de pequena quantidade (3%) do traçador de CO2 dentro da corrente de gás de arraste. O modelo dinâmico caracteriza um processo de difusão-adsorção do traçador de CO2 em termos de fenômenos de transferência de massa (externa e interna). O modelo matemático foi validado com base em um conjunto de resultados experimentais no qual os resultados simulados do traçador de CO2 correspondem adequadamente às medidas experimentais na saída do leito micro-empacotados.
Referências
Anjos, E. B., Oliveira, C. B. & Silva, J. D. (2019). Dynamic analysis to produce hydrogen in a fixed bed catalytic reactor by the steam reforming of toluene. Chemical Engineering Transactions, 74, 553-558. https://doi.org/10.3303/CET1974093.
Anjos, E. B., Carvalho, J. D. C. G. & Silva, J. D. (2017). Dynamic analysis of a three-phase reactor of fixed bed for petroleum and petrochemical industry. In Proceedings of the 24nd International Congress of Mechanical Engineering - COBEM 2017, Curitiba, Brazil, 1-10.
Anjos E. B. & Silva, J. D. (2019). Numerical simulation of the heat transfer for a three-phase reactor of fixed bed. Latin IEEE Amer Trans, 17, 788-795. https://doi.org/10.1109/TLA.2019.8891947.
Bonfim, C. E. S., Pinto, J. C. C. S. & Poubel, W. M. (2020). CFD simulation for the analysis of a contaminated environment with chemical war: influence of flow profiles and determination of risk areas over a reservoir for water distribution. Braz. J. of Develop. 6, 25585-25608. https://doi.org/10.34117/bjdv6n5-131.
Chang, A. C., Chuang, S. C., Gray, M. & Soong, Y. (2003). In-Situ Infrared Study of CO2 Adsorption on SBA-15 Grafted with -(Aminopropyl) triethoxysilane. Energy & Fuels, 17, 468-473. https://doi.org/10.1021/ef020176h.
Chen, S. J., Fu, Y., Huang, Y. X., Tao, Z. C. & Zhu, M. (2016). Experimental investigation of CO2 separation by adsorption methods in natural gas purification. Appl Energy, 179, 329-337. https://doi.org/10.1016/j.apenergy.2016.06.146.
Cruz, B. M. & Silva, J. D. (2017). A two-dimensional mathematical model for the catalytic steam reforming of methane in both conventional fixed-bed and fixed-bed membrane reactors for the Production of hydrogen. Int J Hydrogen Energy, 42, 23670-23690. https://doi.org/10.1016/j.ijhydene.2017.03.019.
Dias, V. F. & Silva, J. D. (2020). Mathematical modelling of the solar-driven steam reforming of methanol for a solar thermochemical micro - fluidized bed reformer: thermal performance and thermochemical conversion. J Braz Soc Mech Sci Eng, 42, 447. https://doi.org/10.1007/s40430-020-02529-6.
Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H. & Srivastava, R. D. (2018). Advances in CO2 capture technology-The U.S. Department of Energy's Carbon Sequestration Program. Int J Greenh Gas Control, 2, 9-20. https://doi.org/10.1016/S1750-5836 (07) 00094-1.
Gray, M. L., Champagne, K. J., Fauth, D., Baltrus, J. P. & Pennline, H. (2008). Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide. Int. J. Greenh Gas Control, 2, 3-8. https://doi.org/10.1016/S1750-5836(07)00088-6.
Joss, L., Gazzani, M. & Mazzotti, M. (2017). Rational design of temperature swing adsorption cycles for post-combustion CO2 capture. Chem Eng Sci, 158, 709-716. https://doi.org/10.1016/j.ces. 2016.10.013.
Kongnoo, A., Tontisirin, S., Worathanakul, P. & Phalakornkule, C. (2017). Surface characteristics and CO2 adsorption capacities of acid-activated zeolite 13X prepared from palm oil mill fly ash. Fuel, 193,385-394. https://doi.org/10.1016/j.fuel.2016.12.087.
Medeiros, J. P. F., Dias, V. F., Silva, J. M. & Silva, J. D. (2021). Thermochemical Performance Analysis of the Steam Reforming of Methane in a Fixed Bed Membrane Reformer: A Modelling and Simulation Study. Membranes, 11, 6, 1-26. https://doi.org/10.3390/ membranes 11010006.
Silva, J. D. (2011). Dynamic evaluation for liquid tracer in a trickle bed reactor. Jour. Braz. Soc. Mech. Sci. Eng, 33, 272-277. https://doi.org/10.1590/S1678-58782011000300002.
Moulijn, J. A., Makkee M & Berger, R. J. (2016). Catalyst testing in multiphase micro-packed-bed reactors; criterion for radial mass transport. Catal. Today, 259, 354-359. https://doi.org/10.1016/j.cattod.2015.05.025.
Oliveira, G. H. H., Oliveira, A. P. L. R., Souza, M. V. C., Neves, R. F. & Botelho, F. M. (2020). Water adsorption isotherms of coffee blends. Braz. J. of Develop., 6, 20988-20997. https://doi.org/10.34117/bjdv6n4-319.
Panariello, L., Mazzei, L. A. & Gavriilidis, A. (2018). Modelling the synthesis of nanoparticles in continuous microreactors: The role of diffusion and residence time distribution on nanoparticle characteristics. Chem. Eng. Journal, 350, 1144-1154. https://doi.org/10.1016/j.cej.2018.03.167.
Rios, R. B., Correia, L. S., Bastos-Neto, M., Torres, A. E. B., Hatimondi, S. A., Ribeiro, A. M., Rodrigues, A. E., Cavalcante Jr, C. L. & de Azevedo, D. C. S. (2014). Evaluation of carbon dioxide-nitrogen separation through fixed bed measurements and simulations. Adsorption, 20, 945-957. https://doi.org/10.1007/s10450-014-9639-3.
Shen, C., Yu, J., Li, P., Grande, C. A. & Rodrigues, A. E. (2011). Capture of CO2 from flue gas by vacuum pressure swing adsorption using activated carbon beads. Adsorption, 17, 179-188. https://doi.org/10.1007/s10450-010-9298-y.
Silva, P. B. A., Carvalho, J. D. C. G. & Silva, J. D. (2019). Hydrogen adsorption on Ni/-Aℓ2O3 in a fixed-bed adsorber: Experimental validation and numerical modelling. Int J Hydrogen Energy, 44, 304-317. https://doi.org/10.1016/j.ijhydene.2018.07.203.
Reis, M. C., Sphaier, L. A., Alves, L. S. B. & Cotta, R. M. (2018). Approximate analytical methodology for calculating friction factors in flow through polygonal cross section ducts. J Braz Soc Mech Sci Eng, 40, 76. https://doi.org/10.1007/s40430-018-1019-6
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Jornandes Marcelo da Silva; Vitória da Fonseca Dias; Jornandes Dias da Silva

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.