Overview of atrazine biodegradation under different oxidation-reduction conditions
DOI:
https://doi.org/10.33448/rsd-v10i8.17689Keywords:
Herbicides; Microbiology; Soil; Agriculture; Groundwater.Abstract
The indiscriminate use of the herbicide atrazine in Brazil and in the world has several adverse effects on human health and ecosystems, which can be found in soil, groundwater, in the air and also in living beings, which justifies research focused on biodegradation, impacts and characteristics of this compound. Our work, through a literature review, shows that atrazine's biodegradation can occur through different oxidation reduction conditions, with the participation of aerobic and anaerobic microbial consortia, generating different degradation metabolite intermediates, such as hydroxyatrazine, N -isopropylammilide, cyanuric acid, biuret, allophanate and urea. In addition, we show microorganisms that have already been detected with the potential for degradation of this compound using atrazine as a source of carbon and / or nitrogen, and its metabolic intermediates formed during aerobic and anaerobic degradation processes, as well as the main genes responsible for synthesis of enzymes involved in the degradation of this compound.
References
Abigail, E. A., Lakshimi, V., & Das, N. (2012). Biodegradation of atrazine by Cryptococcus laurentii isolated from contaminated agricultural soil. Journal of Microbiology and Biotechnology Research, 2(3), 450–457.
Accepts, A. E. M., Society, A., & Reserved, A. R. (2014). Growth of anaerobic methane oxidizing archea and sulfate reducing bacteria in a hight pressure membrane-capsule bioreactor. Applied and Environmental Microbiology, December. https://doi.org/10.1128/AEM.03255-14
Adrian, N. R., & Suflita, J. M. (1990). Reductive Dehalogenation of a Nitrogen Heterocyclic Herbicide in Anoxic Aquifer Slurries. Applied and Environmental Microbiology, 292–294.
Aharon, P., & Fu, B. (2000). Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico. Geochimica et Cosmochimica, 64(2), 233–246.
Aislabie, J., Bej, A. K., Ryburn, J., Lloyd, N., & Wilkins, A. (2018). Characterization of Arthrobacter nicotinovorans HIM , an atrazine-degrading bacterium , from agricultural soil New Zealand. FEMS Microbiology Ecology, 52(August), 279–286. https://doi.org/10.1016/j.femsec.2004.11.012
Almeida, L. da S., & Guimarães, E. C. (2017). Space distribution of the ctc and the relationship macronutrients in a red-yellow latosol cultivated with coffee. Agronomic Culture, 625–639.
Amaro, B. B. D. F., Correia, D. B., Freitas, R. A., Teixeira, P. H. R., Nascimento, C. A., Pereira, C. M., Silva, J. R. L., Silva, M. S. A., Cruz, G. V., Queiroz, M. B., Oliveira, J. P. C., Silva, R. A. R., Macedo, G. F. & Kamdem, J. P. (2021). A Biossegurança no uso de agrotóxicos na percepção de agricultores do Distrito de Cuncas, Barro – Ceará: Saúde Física e Ambiental. Research, Society and Development, 10(1), e15610111644. https://doi.org/10.33448/rsd-v10i1.11644
Ariole, C. N., & Abubakar, A. (2015). Biodegradation of Atrazine by Bacteria Isolated from Lotic Water. Journal of Applied Life Sciences International, 2(3), 119–125. https://doi.org/10.9734/JALSI/2015/14345
Balesteros, M. R. (2009). Development and optimization of methodology for the analysis of atrazine and its degradation products by high performance liquid chromatography and capillary electrophoresis.
Batstone, D J, Keller, J., Angelidaki, I., Kalyuzhnyi, S. V, Pavlostathis, S. G., & Rozzi, A. (2002). The IWA Anaerobic Digestion Model No 1 ( ADM1 ). Water Science and Technology, 1(1), 65–74.
Batstone, Damien J., Lu, Y., & Jensen, P. D. (2015). Impact of dewatering technologies on specific methanogenic activity. Water Research, 82(October), 78–85. https://doi.org/10.1016/j.watres.2015.04.005
Behki, R., Topp, E., Dick, W., & Germon, P. (1993). Metabolism of the Herbicide Atrazine by Rhodococcus Strainst. Applied and Environmental Microbiology, 59(6), 1955–1959.
Bertelkamp, C., Verliefde, A. R. D., Schoutteten, K., Vanhaecke, L., Bussche, J. Vanden, Singhal, N., & Hoek, J. P. Van Der. (2018). The effect of redox conditions and adaptation time on organic micropollutant removal during river bank filtration : A laboratory-scale column study Science of the Total Environment The effect of redox conditions and adaptation time on organic micropolluta. Science of the Total Environment, 544(February 2016), 309–318. https://doi.org/10.1016/j.scitotenv.2015.11.035
Berticelli, R., Decesaro, A., Magro, F., & Colla, L. M. (2016). Compostagem Como Alternativa De Biorremediação De Áreas Contaminadas. Revista CIATEC – UPF, 8(1), 12–28.
Boe, K., John, D., Steyer, J., & Angelidaki, I. (2017). State indicators for monitoring the anaerobic digestion process. Water Research, 44(20), 5973–5980. https://doi.org/10.1016/j.watres.2010.07.043
Bonfleur, E. J. (2010). Behavior of the association between the herbicides glyphosate and atrazine in a dark red Latosol of the Brazilian cerrado biome (pp. 1–81).
Bouallagui, H., Touhami, Y., Cheikh, R. Ben, & Hamdi, M. (2005). Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochemistry, 40, 989–995. https://doi.org/10.1016/j.procbio.2004.03.007
Bowles, M. W., Mogollón, J. M., Kasten, S., Zabel, M., & Hinrichs, K.-U. (2014). Global Rates of Marine Sulfate Reduction and Implications for Sub – Sea-Floor Metabolic Activities. Sciencexpress, May, 1–7. https://doi.org/10.1038/35351
Brand, A. R., Ant, D., Nas, R., Ramalho, A., Pereira1, B., Antônio, D., & De Freitas1, F. (2012). Use of Microorganisms for Bioremediation of Impacted Environments. Rev. Elet. Em Gestão Educação e Tecnologia Ambiental, 6(6), 975–1006. www.ufsm.br/reget%5Cnhttp://cascavel.ufsm.br/revistas/ojs-2.2.2/index.php/reget
Campanari, M. F. Z. (2017). Metagenomics of Atrazine Degradation in Soil Under Different Agricultural and Semidecidual Forest Management (pp. 1–76).
Cao, H., Wang, Y., Lee, O. on, Zeng, X., Shao, Z., & Qian, P.-Y. (2014). Microbial Sulfur Cycle in Two Hydrothermal Chimneys on the. Mbio, 5(1), 1–11. https://doi.org/10.1128/mBio.00980-13.Editor
Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057
Chen, Z., Wang, C., Gschwendtner, S., & Willibald, G. (2016). Denitrification nitrogen gas formation and gene expression in alpine grassland soil as affected by climate change conditions Soil Biology & Biochemistry Relationships between denitri fi cation gene expression , dissimilatory nitrate reduction to ammonium . Soil Biology and Biochemistry, 87(April 2013), 67–77. https://doi.org/10.1016/j.soilbio.2015.03.030
Chiarello, M., Graeff, R., Minetto, L., Cemin, G., Schneider, V. E., Moura, S., Chiarello, M., Graeff, R. N., Minetto, L., Cemin, G., Schneider, V. E., & Moura, S. (2016). Determination of pesticides in water and sediments by HPLC-HRMS and their relation with the use and occupation of soil. New Chemistry, 40(2), 158–165. https://doi.org/10.21577/0100-4042.20160180
CONAMA 357. (2005). Resolução n. 58–63.
Dang, H., & Lovell, C. R. (2016). Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiology and Molecular Biology Reviews, 80(1), 91–138. https://doi.org/10.1128/MMBR.00037-15.Address
Delaune, R. D., Devai, I., Mulbah, C., Crozier, C., & Lindau, C. W. (1997). The influence of soil redox conditions on atrazine degradation in wetlands. Agriculture, Ecosystems & Environment, 66(1), 1–87.
Dellamatrice, P. M., & Monteiro, R. T. (2014). Principais aspectos da poluição de rios brasileiros por pesticidas. Brazilian Journal of Agricultural and Environmental Engineering, July 2015. https://doi.org/10.1590/1807-1929/agriambi.v18n12p1296-1301
Dennis, K. E. (2015). Using the Sulfur Cycle to Constrain Changes in Seawater Chemistry During the Paleogene. Syracuse University Surface.
Douglass, J. F., Radosevich, M., & Tuovinen, O. H. (2014). Mineralization of atrazine in the river water intake and sediments of a constructed flow-through wetland. Ecological Engineering, 72(August 2015), 35–39. https://doi.org/10.1016/j.ecoleng.2014.08.016
Fazlurrahman, Batra, M., Pandey, J., Suri, C. R., & Jain, R. K. (2009). Isolation and characterization of an atrazine-degrading Rhodococcus sp . strain MB-P1 from contaminated soil. Letters in Applied Microbiology, 49, 721–729. https://doi.org/10.1111/j.1472-765X.2009.02724.x
Feijoo, G., Soto, M., Mendez, R. R., & Lema, J. M. (2018). Sodium inhibition in the anaerobic digestion process : Antagonism and adaptation phenomena. Enzyme and Microbial Technology, June. https://doi.org/10.1016/0141-0229(94)00011-F
Fernades, A. F. T. (2014). Caracterização fenotípica e molecular de linhagens de Pseudomonas spp . envolvidas na biodegradação da atrazina Caracterização fenotípica e molecular de linhagens de Pseudomonas spp . envolvidas na biodegradação da atrazina.
Freeman, J., & Thanki, D. (2017). Water contaminated with the herbicide atrazine. Journal of Purdue Undergraduate Research, 1, 57–64.
Furlan, RG; Martins, JF; Santos, JI; Alves, P. (2016). Simulation of the residual effect of atrazine on carrot. Horticultura Brasileira, 0, 584-587. https://doi.org/10.12741/ebrasilis.v7i1.371
Gargouri, B., Mhiri, N., Karray, F., Aloui, F., & Sayadi, S. (2015). Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater. BioMed Research International, 2015(SEPTEMBER), 1–11. https://doi.org/10.1155/2015/929424
Giardi, M. T., Giardina, M. C., & Filacchioni, G. (2014). Chemical and Biological Degradation of Primary Metabolites of Atrazine bv a Nocardia Strain. Agricultural and Biological Chemistry, 1369. https://doi.org/10.1080/00021369.1985.10866949
Gu, J., Fan, Y., & Gu, J. (2003). Biodegradability of Atrazine , Cyanazine and Dicamba under methanogenic condition in three soils of China. Chemosphere, 52, 1515–1521. https://doi.org/10.1016/S0045-6535(03)00490-9
Hardison, A. K., Algar, C. K., Giblin, A. E., & Rich, J. J. (2015). ScienceDirect Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N 2 production. GEOCHIMICA ET COSMOCHIMICA ACTA, 164, 146–160. https://doi.org/10.1016/j.gca.2015.04.049
Hunter, W. J., & Shaner, D. L. (2009). Nitrogen limited biobarriers remove atrazine from contaminated water : Laboratory studies. Journal of Contaminant Hydrology, 103(1–2), 29–37. https://doi.org/10.1016/j.jconhyd.2008.08.004
Javaroni, R. D. C. A., Landgraf, M. D., & Rezende, M. O. O. (2016). Behavior of the herbicides atrazine and alachlor applied to soil prepared for the cultivation of sugarcane. New Chemistry, February 1999. https://doi.org/10.1590/S0100-40421999000100012
Jenkins, J. J. (2015). Atrazine degradation by bioaugmented sediment from constructed wetlands. Applied Microbiology and Biotechnology, February. https://doi.org/10.1007/s002530100792
Kabra, A. N., Ji, M. K., Choi, J., Kim, J. R., Govindwar, S. P., & Jeon, B. H. (2014). Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana. Environmental Science and Pollution Research, October, 12270–12278. https://doi.org/10.1007/s11356-014-3157-4
Kanissery, R. G., & Sims, G. K. (2011). Biostimulation for the Enhanced Degradation of Herbicides in Soil. Applied and Environmental Soil Science, 2011. https://doi.org/10.1155/2011/843450
Kolekar, P. D., Phugare, S. S., & Jadhav, J. P. (2014). Biodegradation of atrazine by Rhodococcus sp. BCH2 to N-isopropylammelide with subsequent assessment of toxicity of biodegraded metabolites. Environmental Science and Pollution Research, 21(3), 2334–2345. https://doi.org/10.1007/s11356-013-2151-6
Kumar, P., & Philip, L. (2004). Atrazine degradation in anaerobic environment by a mixed microbial consortium. Water Research, 38, 2277–2284. https://doi.org/10.1016/j.watres.2003.10.059
Cecilia, D., & Maggi, F. (2016). Kinetics of atrazine, deisopropylatrazine, and deethylatrazine soil biodecomposers. Journal of Environmental Management, 183(September), 673–686. https://doi.org/10.1016/j.jenvman.2016.09.012
Lin, Z., Sun, X., Strauss, H., Lu, Y., Xu, L., & Lu, H. (2017). Sulfur isotopic evidence for the origin of elemental sulfur in gas hydrate-bearing sediments of the northern South China Sea. Geophysical Research Abstracts, 19(1993), 2502.
Ma, L., Chen, S., Yuan, J., Yang, P., Liu, Y., & Stewart, K. (2017). Rapid biodegradation of atrazine by Ensifer sp. strain and its degradation genes. International Biodeterioration and Biodegradation, 116(November 2016), 133–140. https://doi.org/10.1016/j.ibiod.2016.10.022
Machado, C. S., Fregonesi, B. M., Zagui, G. S., Martinis, B. S. de, & Segura-Muñoz, S. (2018). Atrazine in river water: human health risk assessment by recreational exposure. Environmental Management and Sustainability Journal, 7(2016), 36–46. https://doi.org/10.19177/rgsa.v7e3201836-46
Mandelbaum, R. T., Wackett, L. P., & Allan, D. L. (1993). Mineralization of the s-Triazine Ring of Atrazine by Stable Bacterial Mixed Cultures. Applied and Environmental Microbiology, 59(6), 1695–1701.
Matias, T. P., Braga, J. K. & Brucha, G. (2019). Anaerobic biodegradation of atrazine under different redox conditions. International Journal of Advanced Engineering Research and Science, 6(10), 227–236. https://doi.org/10.22161/ijaers.610.35
Neiverth, C. A. (2015). Determination of atrazine in water using solid phase extraction and gas chromatography coupled to mass spectrometry. Ambiciência Guarapuava, 1, 475–482. https://doi.org/10.5935/ambiencia.2015.02.14nt
Oliveira, D. A. do C. A. P. B. do C. J. M. B. P. J. L. M. (2013). Comportamento ambiental e toxidade dos herbicidas atrazina e simazina. Revista Ambiente e Agua. https://doi.org/10.4136/1980-993X
Pacwa-Płociniczak, M., Płaza, G. A., Poliwoda, A., & Piotrowska-Seget, Z. (2014). Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil. Environmental Science and Pollution Research, 21(15), 9385–9395. https://doi.org/10.1007/s11356-014-2872-1
Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Método Qualitativo, Quantitativo ou Quali-Quanti. In Metodologia da Pesquisa Científica (1st ed.). UFSM, NTE. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 28 março 2020.
Polonio, J. C., Polli, A. D., Bulla, L. M. C., Rosseto, P., Dos Santos, C. M., Rhoden, S. A., Pamphile, J. A., & Conte, H. (2014). Potencial biorremediador de microrganismos: Levantamento de resíduos industriais e urbanos tratáveis no município de Maringá-PR. BBR - Biochemistry and Biotechnology Reports, 3(2), 31. https://doi.org/10.5433/2316-5200.2014v3n2p31
Pous, N., Balaguer, M. D., Colprim, J., & Puig, S. (2018). Opportunities for groundwater microbial. Microbial Biotechnology. https://doi.org/10.1111/1751-7915.12866
Qian, J., Wang, L., Wu, Y., Bond, P. L., Zhang, Y., & Chang, X. (2017). Free sulfurous acid (FSA) inhibition of biological thiosulfate reduction (BTR) in the sulfur cycle-driven wastewater treatment process. Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.02.117
Queiroz, B. P. V.; Monteiro, R. T. R. (2000). Degradation of 14 c-atrazine in soil under semicontrolled conditions 1. SCIELO, 849–856.
Rajagopal, R., Massé, D. I., & Singh, G. (2013). A Critical Review on Inhibition of Anaerobic Digestion Process by Excess Ammonia Bioresource Technology A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 143(February 2018), 632–641. https://doi.org/10.1016/j.biortech.2013.06.030
Rodr, D. M. (2015). Bioremediation of Petroleum Derivative Using Biosurfactant Produced by Serratia marcescens UCP / WFCC 1549 in Low-Cost Medium. 4(August), 550–562.
Sene, L., Converti, A., Aparecida, G., Secchi, R., & Cássia, R. De. (2010). New Aspects on Atrazine Biodegradation. Brazilian Archives of Biology and Technology, 53(April), 487–496.
Silva, A. A. da. (2014). Bioprospecting of bacteria with atrazine degradation potential in sugarcane plantations in the state of Mato Grosso do Sul.
Souza, E. L. De, Damasceno, F., Schirmer, G. K., Ramires, M. F., Bisognin, R. P., Bohrer, R. E. G., Vasconcelos, M. D. C., & Cezimbra, J. C. G. (2018). Resíduos contaminantes no solo: possibilidades e consequências. Journal of Environmental Management and Sustainability, 484–509. https://doi.org/10.19177/rgsa.v7e22018465-483
Souza, M. L. D. E., Newcombe, D., Alvey, S. A. M., Crowley, D. E., Hay, A., Sadowsky, M. J., & Wackett, L. P. (1998). Molecular Basis of a Bacterial Consortium : Interspecies Catabolism of Atrazine. Applied and Environmental Microbiology, 64(1), 178–184.
Souza, M. L. D. E., Wackett, L. P., Boundy-mills, K. L., Mandelbaum, R. T., & Sadowsky, M. J. (1995). Cloning , Characterization , and Expression of a Gene Region from Pseudomonas sp . Strain ADP Involved in the Dechlorination of Atrazine †. Applied and Environmental Microbiology, 61(9), 3373–3378.
Swissa, N., Nitzan, Y., Anker, Y., & Cahan, R. (2015). Biofilter based on a biofilm immobilized on geo-textile sheets for rapid atrazine biodegradation. International Biodeterioration and Biodegradation, 105(October 2016), 146–152. https://doi.org/10.1016/j.ibiod.2015.09.002
Tomassoni, F., Santos, R. F., Santos, F. S., Carpinski, M., & Silveira, L. da. (2014). Soil Bioremediation Technique. ActaIguazu, 3(3), 46–56.
Tuovinen, O. H., Deshmukh, V., Ozkaya, B., & Radosevich, M. (2015). Kinetics of aerobic and anaerobic biomineralization of atrazine in surface and subsurface agricultural soils in Ohio. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 50(10), 718–726. https://doi.org/10.1080/03601234.2015.1048105
Vail, A. W., Wang, P., Uefuji, H., Samac, D. A., Vance, C. P., Wackett, L. P., & Sadowsky, M. J. (2014). Biodegradation of atrazine by three transgenic grasses and alfalfa expressing a modified bacterial atrazine chlorohydrolase gene. Transgenic Research, 24(3), 475–488. https://doi.org/10.1007/s11248-014-9851-7
Vilcáez, J. (2017). Numerical modeling and simulation of microbial methanogenesis in geological CO2 storage sites Journal of Petroleum Science and Engineering Numerical modeling and simulation of microbial methanogenesis in geological CO 2 storage sites. Journal of Petroleum Science and Engineering, 135(November 2015), 583–595. https://doi.org/10.1016/j.petrol.2015.10.015
Wang, D. T., Gruen, D. S., Lollar, B. S., Hinrichs, K., Stewart, L. C., Holden, J. F., Hristov, A. N., Pohlman, J. W., Morrill, P. L., Könneke, M., Delwiche, B., Reeves, E. P., Sutcliffe, C. N., Ritter, D. J., & Seewald, J. S. (2015). Nonequilibrium clumped isotope signals in microbial methane 3. Science.
Wilkie, A., Goto, M., Bordeaux, F. M., & Smith, P. H. (1986). Enhancement of Anaerobic Methanogenesis from Napiergrass by Addition of Micronutrients *. Biomass, 11(7557), 135–146.
Yamada, C., Kato, S., Ueno, Y., Ishii, M., & Igarashi, Y. (2014a). Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate. Jornal of Bioscience and Bioengineering, xx(xx), 1–5.
Yamada, C., Kato, S., Ueno, Y., Ishii, M., & Igarashi, Y. (2014b). Inhibitory Effects of Ferrihydrite on a Thermophilic Methanogenic Community. Microbes and Environments, 29(2), 227–230. https://doi.org/10.1264/jsme2.ME14026
Yanze-kontchou, C., & Gschwind, N. (1994). Mineralization of the Herbicide Atrazine as by a Pseudomonas Strain. Applied and Environmental Microbiology, 60(12), 4297–4302.
Yen, H., & Brune, D. E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology, 98, 130–134. https://doi.org/10.1016/j.biortech.2005.11.010
Zhang, C., Li, M., Xu, X., & Liu, N. (2015). Effects of carbon nanotubes on atrazine biodegradation by Arthrobacter sp. Journal of Hazardous Materials, 287(April 2015), 1–6. https://doi.org/10.1016/j.jhazmat.2015.01.039
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Tális Pereira Matias; Juliana Kawanishi Braga; Leonardo Henrique Soares Damasceno; Gunther Brucha
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.