Aspectos implicados en la biodegradación de la atrazina en diferentes condiciones de oxidación-reducción

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i8.17689

Palabras clave:

Herbicidas; Microbiología; Agricultura; Suelo; Agua subterránea.

Resumen

El uso indiscriminado del herbicida atrazina en Brasil y en todo el mundo tiene varios efectos adversos sobre la salud humana y los ecosistemas, pudiendo encontrarse en el suelo, las aguas subterráneas, el aire y también en los seres vivos, lo que justifica la investigación dirigida a la biodegradación, impactos y características de esta. compuesto. El presente trabajo, a través de una revisión de la literatura, muestra que la biodegradación de la atrazina puede ocurrir a través de diferentes condiciones de oxidación-reducción, con la participación de consorcios microbianos aeróbicos y anaeróbicos, generando diferentes metabolitos intermedios, tales como hidroxiatrazina, N-isopropilammilida, ácido cianúrico, biuret, alofanato y urea. Además, esta revisión muestra microorganismos que ya han sido detectados con potencial de degradación de este compuesto utilizando atrazina como fuente de carbono y / o nitrógeno, y sus intermediarios metabólicos formados durante los procesos de degradación aeróbica y anaeróbica, así como los genes principales. responsable de la síntesis de enzimas implicadas en la degradación de este compuesto.

Biografía del autor/a

Tális Pereira Matias, Universidade Federal de Alfenas

Doutorando em Ciências Ambientais pela Universidade Federal de Alfenas (UNIFAL-MG), Mestre em Ciência e Enganharia Ambiental, Engenheiro Ambiental e Bacharel em Interdisciplinar em Ciência e Tecnologia pela mesma universidade.

Juliana Kawanishi Braga, Universidade Federal de Alfenas

Doutora em Hidráulica e Saneamento pela Universidade de São Paulo (2014), Mestre em Recursos Hídricos pela Universidade Federal de Mato Grosso (2009) e Graduação em Licenciatura Plena em Ciências Biológicas pela Universidade Federal de Mato Grosso (2007).

Leonardo Henrique Soares Damasceno, Universidade Federal de Alfenas

Engenheiro Agrícola formado pela Universidade Federal de Lavras (UFLA) em 2001, Mestre em Engenharia Hidráulica e Saneamento pela Universidade de São Paulo (São Carlos) em 2004 e Doutor em Engenharia Hidráulica e Saneamento pela Universidade de São Paulo (São Carlos) em 2008. Atualmente é Professor Adjunto da Universidade Federal de Alfenas (UNIFAL-MG), no Instituto de Ciência e Tecnologia, em Poços de Caldas (MG). Desenvolve projetos de Pesquisa, Desenvolvimento e Inovação em Engenharia Ambiental, com ênfase em Biotecnologia Ambiental, atuando principalmente nos seguintes temas: desenvolvimento de biorreatores anaeróbios, remediação de resíduos tóxicos e remediação, recuperação e valoração de resíduos de mineração.

Gunther Brucha, Universidade Federal de Alfenas

Pós-Doutorado no Departamento de Tecnologia Ambiental da Universidade de Wageningen, Holanda (2016-2017), doutorado em Engenharia Civil pela Escola de Engenharia de São Carlos (2007), mestrado em Ciências da Engenharia Ambiental pela Universidade de São Paulo (2001), graduação em Ciências Biológicas pela Universidade Federal de São Carlos (1997). Professor da Universidade Federal de Alfenas, Instituto de Ciência e Tecnologia.

Citas

Abigail, E. A., Lakshimi, V., & Das, N. (2012). Biodegradation of atrazine by Cryptococcus laurentii isolated from contaminated agricultural soil. Journal of Microbiology and Biotechnology Research, 2(3), 450–457.

Accepts, A. E. M., Society, A., & Reserved, A. R. (2014). Growth of anaerobic methane oxidizing archea and sulfate reducing bacteria in a hight pressure membrane-capsule bioreactor. Applied and Environmental Microbiology, December. https://doi.org/10.1128/AEM.03255-14

Adrian, N. R., & Suflita, J. M. (1990). Reductive Dehalogenation of a Nitrogen Heterocyclic Herbicide in Anoxic Aquifer Slurries. Applied and Environmental Microbiology, 292–294.

Aharon, P., & Fu, B. (2000). Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico. Geochimica et Cosmochimica, 64(2), 233–246.

Aislabie, J., Bej, A. K., Ryburn, J., Lloyd, N., & Wilkins, A. (2018). Characterization of Arthrobacter nicotinovorans HIM , an atrazine-degrading bacterium , from agricultural soil New Zealand. FEMS Microbiology Ecology, 52(August), 279–286. https://doi.org/10.1016/j.femsec.2004.11.012

Almeida, L. da S., & Guimarães, E. C. (2017). Space distribution of the ctc and the relationship macronutrients in a red-yellow latosol cultivated with coffee. Agronomic Culture, 625–639.

Amaro, B. B. D. F., Correia, D. B., Freitas, R. A., Teixeira, P. H. R., Nascimento, C. A., Pereira, C. M., Silva, J. R. L., Silva, M. S. A., Cruz, G. V., Queiroz, M. B., Oliveira, J. P. C., Silva, R. A. R., Macedo, G. F. & Kamdem, J. P. (2021). A Biossegurança no uso de agrotóxicos na percepção de agricultores do Distrito de Cuncas, Barro – Ceará: Saúde Física e Ambiental. Research, Society and Development, 10(1), e15610111644. https://doi.org/10.33448/rsd-v10i1.11644

Ariole, C. N., & Abubakar, A. (2015). Biodegradation of Atrazine by Bacteria Isolated from Lotic Water. Journal of Applied Life Sciences International, 2(3), 119–125. https://doi.org/10.9734/JALSI/2015/14345

Balesteros, M. R. (2009). Development and optimization of methodology for the analysis of atrazine and its degradation products by high performance liquid chromatography and capillary electrophoresis.

Batstone, D J, Keller, J., Angelidaki, I., Kalyuzhnyi, S. V, Pavlostathis, S. G., & Rozzi, A. (2002). The IWA Anaerobic Digestion Model No 1 ( ADM1 ). Water Science and Technology, 1(1), 65–74.

Batstone, Damien J., Lu, Y., & Jensen, P. D. (2015). Impact of dewatering technologies on specific methanogenic activity. Water Research, 82(October), 78–85. https://doi.org/10.1016/j.watres.2015.04.005

Behki, R., Topp, E., Dick, W., & Germon, P. (1993). Metabolism of the Herbicide Atrazine by Rhodococcus Strainst. Applied and Environmental Microbiology, 59(6), 1955–1959.

Bertelkamp, C., Verliefde, A. R. D., Schoutteten, K., Vanhaecke, L., Bussche, J. Vanden, Singhal, N., & Hoek, J. P. Van Der. (2018). The effect of redox conditions and adaptation time on organic micropollutant removal during river bank filtration : A laboratory-scale column study Science of the Total Environment The effect of redox conditions and adaptation time on organic micropolluta. Science of the Total Environment, 544(February 2016), 309–318. https://doi.org/10.1016/j.scitotenv.2015.11.035

Berticelli, R., Decesaro, A., Magro, F., & Colla, L. M. (2016). Compostagem Como Alternativa De Biorremediação De Áreas Contaminadas. Revista CIATEC – UPF, 8(1), 12–28.

Boe, K., John, D., Steyer, J., & Angelidaki, I. (2017). State indicators for monitoring the anaerobic digestion process. Water Research, 44(20), 5973–5980. https://doi.org/10.1016/j.watres.2010.07.043

Bonfleur, E. J. (2010). Behavior of the association between the herbicides glyphosate and atrazine in a dark red Latosol of the Brazilian cerrado biome (pp. 1–81).

Bouallagui, H., Touhami, Y., Cheikh, R. Ben, & Hamdi, M. (2005). Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochemistry, 40, 989–995. https://doi.org/10.1016/j.procbio.2004.03.007

Bowles, M. W., Mogollón, J. M., Kasten, S., Zabel, M., & Hinrichs, K.-U. (2014). Global Rates of Marine Sulfate Reduction and Implications for Sub – Sea-Floor Metabolic Activities. Sciencexpress, May, 1–7. https://doi.org/10.1038/35351

Brand, A. R., Ant, D., Nas, R., Ramalho, A., Pereira1, B., Antônio, D., & De Freitas1, F. (2012). Use of Microorganisms for Bioremediation of Impacted Environments. Rev. Elet. Em Gestão Educação e Tecnologia Ambiental, 6(6), 975–1006. www.ufsm.br/reget%5Cnhttp://cascavel.ufsm.br/revistas/ojs-2.2.2/index.php/reget

Campanari, M. F. Z. (2017). Metagenomics of Atrazine Degradation in Soil Under Different Agricultural and Semidecidual Forest Management (pp. 1–76).

Cao, H., Wang, Y., Lee, O. on, Zeng, X., Shao, Z., & Qian, P.-Y. (2014). Microbial Sulfur Cycle in Two Hydrothermal Chimneys on the. Mbio, 5(1), 1–11. https://doi.org/10.1128/mBio.00980-13.Editor

Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057

Chen, Z., Wang, C., Gschwendtner, S., & Willibald, G. (2016). Denitrification nitrogen gas formation and gene expression in alpine grassland soil as affected by climate change conditions Soil Biology & Biochemistry Relationships between denitri fi cation gene expression , dissimilatory nitrate reduction to ammonium . Soil Biology and Biochemistry, 87(April 2013), 67–77. https://doi.org/10.1016/j.soilbio.2015.03.030

Chiarello, M., Graeff, R., Minetto, L., Cemin, G., Schneider, V. E., Moura, S., Chiarello, M., Graeff, R. N., Minetto, L., Cemin, G., Schneider, V. E., & Moura, S. (2016). Determination of pesticides in water and sediments by HPLC-HRMS and their relation with the use and occupation of soil. New Chemistry, 40(2), 158–165. https://doi.org/10.21577/0100-4042.20160180

CONAMA 357. (2005). Resolução n. 58–63.

Dang, H., & Lovell, C. R. (2016). Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiology and Molecular Biology Reviews, 80(1), 91–138. https://doi.org/10.1128/MMBR.00037-15.Address

Delaune, R. D., Devai, I., Mulbah, C., Crozier, C., & Lindau, C. W. (1997). The influence of soil redox conditions on atrazine degradation in wetlands. Agriculture, Ecosystems & Environment, 66(1), 1–87.

Dellamatrice, P. M., & Monteiro, R. T. (2014). Principais aspectos da poluição de rios brasileiros por pesticidas. Brazilian Journal of Agricultural and Environmental Engineering, July 2015. https://doi.org/10.1590/1807-1929/agriambi.v18n12p1296-1301

Dennis, K. E. (2015). Using the Sulfur Cycle to Constrain Changes in Seawater Chemistry During the Paleogene. Syracuse University Surface.

Douglass, J. F., Radosevich, M., & Tuovinen, O. H. (2014). Mineralization of atrazine in the river water intake and sediments of a constructed flow-through wetland. Ecological Engineering, 72(August 2015), 35–39. https://doi.org/10.1016/j.ecoleng.2014.08.016

Fazlurrahman, Batra, M., Pandey, J., Suri, C. R., & Jain, R. K. (2009). Isolation and characterization of an atrazine-degrading Rhodococcus sp . strain MB-P1 from contaminated soil. Letters in Applied Microbiology, 49, 721–729. https://doi.org/10.1111/j.1472-765X.2009.02724.x

Feijoo, G., Soto, M., Mendez, R. R., & Lema, J. M. (2018). Sodium inhibition in the anaerobic digestion process : Antagonism and adaptation phenomena. Enzyme and Microbial Technology, June. https://doi.org/10.1016/0141-0229(94)00011-F

Fernades, A. F. T. (2014). Caracterização fenotípica e molecular de linhagens de Pseudomonas spp . envolvidas na biodegradação da atrazina Caracterização fenotípica e molecular de linhagens de Pseudomonas spp . envolvidas na biodegradação da atrazina.

Freeman, J., & Thanki, D. (2017). Water contaminated with the herbicide atrazine. Journal of Purdue Undergraduate Research, 1, 57–64.

Furlan, RG; Martins, JF; Santos, JI; Alves, P. (2016). Simulation of the residual effect of atrazine on carrot. Horticultura Brasileira, 0, 584-587. https://doi.org/10.12741/ebrasilis.v7i1.371

Gargouri, B., Mhiri, N., Karray, F., Aloui, F., & Sayadi, S. (2015). Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater. BioMed Research International, 2015(SEPTEMBER), 1–11. https://doi.org/10.1155/2015/929424

Giardi, M. T., Giardina, M. C., & Filacchioni, G. (2014). Chemical and Biological Degradation of Primary Metabolites of Atrazine bv a Nocardia Strain. Agricultural and Biological Chemistry, 1369. https://doi.org/10.1080/00021369.1985.10866949

Gu, J., Fan, Y., & Gu, J. (2003). Biodegradability of Atrazine , Cyanazine and Dicamba under methanogenic condition in three soils of China. Chemosphere, 52, 1515–1521. https://doi.org/10.1016/S0045-6535(03)00490-9

Hardison, A. K., Algar, C. K., Giblin, A. E., & Rich, J. J. (2015). ScienceDirect Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N 2 production. GEOCHIMICA ET COSMOCHIMICA ACTA, 164, 146–160. https://doi.org/10.1016/j.gca.2015.04.049

Hunter, W. J., & Shaner, D. L. (2009). Nitrogen limited biobarriers remove atrazine from contaminated water : Laboratory studies. Journal of Contaminant Hydrology, 103(1–2), 29–37. https://doi.org/10.1016/j.jconhyd.2008.08.004

Javaroni, R. D. C. A., Landgraf, M. D., & Rezende, M. O. O. (2016). Behavior of the herbicides atrazine and alachlor applied to soil prepared for the cultivation of sugarcane. New Chemistry, February 1999. https://doi.org/10.1590/S0100-40421999000100012

Jenkins, J. J. (2015). Atrazine degradation by bioaugmented sediment from constructed wetlands. Applied Microbiology and Biotechnology, February. https://doi.org/10.1007/s002530100792

Kabra, A. N., Ji, M. K., Choi, J., Kim, J. R., Govindwar, S. P., & Jeon, B. H. (2014). Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana. Environmental Science and Pollution Research, October, 12270–12278. https://doi.org/10.1007/s11356-014-3157-4

Kanissery, R. G., & Sims, G. K. (2011). Biostimulation for the Enhanced Degradation of Herbicides in Soil. Applied and Environmental Soil Science, 2011. https://doi.org/10.1155/2011/843450

Kolekar, P. D., Phugare, S. S., & Jadhav, J. P. (2014). Biodegradation of atrazine by Rhodococcus sp. BCH2 to N-isopropylammelide with subsequent assessment of toxicity of biodegraded metabolites. Environmental Science and Pollution Research, 21(3), 2334–2345. https://doi.org/10.1007/s11356-013-2151-6

Kumar, P., & Philip, L. (2004). Atrazine degradation in anaerobic environment by a mixed microbial consortium. Water Research, 38, 2277–2284. https://doi.org/10.1016/j.watres.2003.10.059

Cecilia, D., & Maggi, F. (2016). Kinetics of atrazine, deisopropylatrazine, and deethylatrazine soil biodecomposers. Journal of Environmental Management, 183(September), 673–686. https://doi.org/10.1016/j.jenvman.2016.09.012

Lin, Z., Sun, X., Strauss, H., Lu, Y., Xu, L., & Lu, H. (2017). Sulfur isotopic evidence for the origin of elemental sulfur in gas hydrate-bearing sediments of the northern South China Sea. Geophysical Research Abstracts, 19(1993), 2502.

Ma, L., Chen, S., Yuan, J., Yang, P., Liu, Y., & Stewart, K. (2017). Rapid biodegradation of atrazine by Ensifer sp. strain and its degradation genes. International Biodeterioration and Biodegradation, 116(November 2016), 133–140. https://doi.org/10.1016/j.ibiod.2016.10.022

Machado, C. S., Fregonesi, B. M., Zagui, G. S., Martinis, B. S. de, & Segura-Muñoz, S. (2018). Atrazine in river water: human health risk assessment by recreational exposure. Environmental Management and Sustainability Journal, 7(2016), 36–46. https://doi.org/10.19177/rgsa.v7e3201836-46

Mandelbaum, R. T., Wackett, L. P., & Allan, D. L. (1993). Mineralization of the s-Triazine Ring of Atrazine by Stable Bacterial Mixed Cultures. Applied and Environmental Microbiology, 59(6), 1695–1701.

Matias, T. P., Braga, J. K. & Brucha, G. (2019). Anaerobic biodegradation of atrazine under different redox conditions. International Journal of Advanced Engineering Research and Science, 6(10), 227–236. https://doi.org/10.22161/ijaers.610.35

Neiverth, C. A. (2015). Determination of atrazine in water using solid phase extraction and gas chromatography coupled to mass spectrometry. Ambiciência Guarapuava, 1, 475–482. https://doi.org/10.5935/ambiencia.2015.02.14nt

Oliveira, D. A. do C. A. P. B. do C. J. M. B. P. J. L. M. (2013). Comportamento ambiental e toxidade dos herbicidas atrazina e simazina. Revista Ambiente e Agua. https://doi.org/10.4136/1980-993X

Pacwa-Płociniczak, M., Płaza, G. A., Poliwoda, A., & Piotrowska-Seget, Z. (2014). Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil. Environmental Science and Pollution Research, 21(15), 9385–9395. https://doi.org/10.1007/s11356-014-2872-1

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Método Qualitativo, Quantitativo ou Quali-Quanti. In Metodologia da Pesquisa Científica (1st ed.). UFSM, NTE. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 28 março 2020.

Polonio, J. C., Polli, A. D., Bulla, L. M. C., Rosseto, P., Dos Santos, C. M., Rhoden, S. A., Pamphile, J. A., & Conte, H. (2014). Potencial biorremediador de microrganismos: Levantamento de resíduos industriais e urbanos tratáveis no município de Maringá-PR. BBR - Biochemistry and Biotechnology Reports, 3(2), 31. https://doi.org/10.5433/2316-5200.2014v3n2p31

Pous, N., Balaguer, M. D., Colprim, J., & Puig, S. (2018). Opportunities for groundwater microbial. Microbial Biotechnology. https://doi.org/10.1111/1751-7915.12866

Qian, J., Wang, L., Wu, Y., Bond, P. L., Zhang, Y., & Chang, X. (2017). Free sulfurous acid (FSA) inhibition of biological thiosulfate reduction (BTR) in the sulfur cycle-driven wastewater treatment process. Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.02.117

Queiroz, B. P. V.; Monteiro, R. T. R. (2000). Degradation of 14 c-atrazine in soil under semicontrolled conditions 1. SCIELO, 849–856.

Rajagopal, R., Massé, D. I., & Singh, G. (2013). A Critical Review on Inhibition of Anaerobic Digestion Process by Excess Ammonia Bioresource Technology A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 143(February 2018), 632–641. https://doi.org/10.1016/j.biortech.2013.06.030

Rodr, D. M. (2015). Bioremediation of Petroleum Derivative Using Biosurfactant Produced by Serratia marcescens UCP / WFCC 1549 in Low-Cost Medium. 4(August), 550–562.

Sene, L., Converti, A., Aparecida, G., Secchi, R., & Cássia, R. De. (2010). New Aspects on Atrazine Biodegradation. Brazilian Archives of Biology and Technology, 53(April), 487–496.

Silva, A. A. da. (2014). Bioprospecting of bacteria with atrazine degradation potential in sugarcane plantations in the state of Mato Grosso do Sul.

Souza, E. L. De, Damasceno, F., Schirmer, G. K., Ramires, M. F., Bisognin, R. P., Bohrer, R. E. G., Vasconcelos, M. D. C., & Cezimbra, J. C. G. (2018). Resíduos contaminantes no solo: possibilidades e consequências. Journal of Environmental Management and Sustainability, 484–509. https://doi.org/10.19177/rgsa.v7e22018465-483

Souza, M. L. D. E., Newcombe, D., Alvey, S. A. M., Crowley, D. E., Hay, A., Sadowsky, M. J., & Wackett, L. P. (1998). Molecular Basis of a Bacterial Consortium : Interspecies Catabolism of Atrazine. Applied and Environmental Microbiology, 64(1), 178–184.

Souza, M. L. D. E., Wackett, L. P., Boundy-mills, K. L., Mandelbaum, R. T., & Sadowsky, M. J. (1995). Cloning , Characterization , and Expression of a Gene Region from Pseudomonas sp . Strain ADP Involved in the Dechlorination of Atrazine †. Applied and Environmental Microbiology, 61(9), 3373–3378.

Swissa, N., Nitzan, Y., Anker, Y., & Cahan, R. (2015). Biofilter based on a biofilm immobilized on geo-textile sheets for rapid atrazine biodegradation. International Biodeterioration and Biodegradation, 105(October 2016), 146–152. https://doi.org/10.1016/j.ibiod.2015.09.002

Tomassoni, F., Santos, R. F., Santos, F. S., Carpinski, M., & Silveira, L. da. (2014). Soil Bioremediation Technique. ActaIguazu, 3(3), 46–56.

Tuovinen, O. H., Deshmukh, V., Ozkaya, B., & Radosevich, M. (2015). Kinetics of aerobic and anaerobic biomineralization of atrazine in surface and subsurface agricultural soils in Ohio. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 50(10), 718–726. https://doi.org/10.1080/03601234.2015.1048105

Vail, A. W., Wang, P., Uefuji, H., Samac, D. A., Vance, C. P., Wackett, L. P., & Sadowsky, M. J. (2014). Biodegradation of atrazine by three transgenic grasses and alfalfa expressing a modified bacterial atrazine chlorohydrolase gene. Transgenic Research, 24(3), 475–488. https://doi.org/10.1007/s11248-014-9851-7

Vilcáez, J. (2017). Numerical modeling and simulation of microbial methanogenesis in geological CO2 storage sites Journal of Petroleum Science and Engineering Numerical modeling and simulation of microbial methanogenesis in geological CO 2 storage sites. Journal of Petroleum Science and Engineering, 135(November 2015), 583–595. https://doi.org/10.1016/j.petrol.2015.10.015

Wang, D. T., Gruen, D. S., Lollar, B. S., Hinrichs, K., Stewart, L. C., Holden, J. F., Hristov, A. N., Pohlman, J. W., Morrill, P. L., Könneke, M., Delwiche, B., Reeves, E. P., Sutcliffe, C. N., Ritter, D. J., & Seewald, J. S. (2015). Nonequilibrium clumped isotope signals in microbial methane 3. Science.

Wilkie, A., Goto, M., Bordeaux, F. M., & Smith, P. H. (1986). Enhancement of Anaerobic Methanogenesis from Napiergrass by Addition of Micronutrients *. Biomass, 11(7557), 135–146.

Yamada, C., Kato, S., Ueno, Y., Ishii, M., & Igarashi, Y. (2014a). Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate. Jornal of Bioscience and Bioengineering, xx(xx), 1–5.

Yamada, C., Kato, S., Ueno, Y., Ishii, M., & Igarashi, Y. (2014b). Inhibitory Effects of Ferrihydrite on a Thermophilic Methanogenic Community. Microbes and Environments, 29(2), 227–230. https://doi.org/10.1264/jsme2.ME14026

Yanze-kontchou, C., & Gschwind, N. (1994). Mineralization of the Herbicide Atrazine as by a Pseudomonas Strain. Applied and Environmental Microbiology, 60(12), 4297–4302.

Yen, H., & Brune, D. E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology, 98, 130–134. https://doi.org/10.1016/j.biortech.2005.11.010

Zhang, C., Li, M., Xu, X., & Liu, N. (2015). Effects of carbon nanotubes on atrazine biodegradation by Arthrobacter sp. Journal of Hazardous Materials, 287(April 2015), 1–6. https://doi.org/10.1016/j.jhazmat.2015.01.039

Publicado

18/07/2021

Cómo citar

MATIAS, T. P. .; BRAGA, J. K. .; DAMASCENO, L. H. S. .; BRUCHA, G. Aspectos implicados en la biodegradación de la atrazina en diferentes condiciones de oxidación-reducción. Research, Society and Development, [S. l.], v. 10, n. 8, p. e59910817689, 2021. DOI: 10.33448/rsd-v10i8.17689. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17689. Acesso em: 24 nov. 2024.

Número

Sección

Ingenierías