Degree of conversion and cohesive strength of conventional dual resin and self-adhesive cements by using of different forms of activation

Authors

DOI:

https://doi.org/10.33448/rsd-v10i9.17850

Keywords:

Resin Cements; Polymerization; Physical properties.

Abstract

The aim of this study was to evaluate the degree of conversion (DC) and cohesive strength (CS) of two conventional   resin cements and a self-adhesive resin cement using different forms of activation. Two conventional dual resin cements (Variolink II and RelyX ARC) and a self-adhesive resin cement were polymerized in three different ways of activation, namely Chemically Activated (CA), Light Activated with Interposition of a resin disc (LI) and Light-Activated (L). The DC was evaluated using Fourier Transformed Infrared Spectroscopy - FTIR (Spectrum 100). In the CS test, the samples were tested until fracture in a universal testing machine (Instron 4411). The mean values obtained in the DC and CS tests were evaluated using two-way analysis of variance (ANOVA) (cement and activation) and Tukey test (p≤0.05). Irrespective of the activation mode, RelyX ARC showed the highest DC values,  RelyX U200, the lowest values, and Variolink II intermediate values. Group L always had higher for DC and CS values than group CA. Among the resin cements, irrespective of the activation mode, there were no differences in CS values. The chemical activation mode of dual resin cements led to lower DC and CS values. RelyX ARC cement had the highest DC values and RelyX U200 cement the lowest values, however, in relation to CS, there were no differences.

References

Almeida, C. M., Meereis, C. T. W., Leal, F. B., Ogliari, A. O., Piva, E., & Ogliari, F. A. (2018). Evaluation of long-term bond strength and selected properties of self-adhesive resin cements. Brazilian oral research, 32, e15. https://doi.org/10.1590/1807-3107bor- 2018.vol32.0015

Alovisi, M., Scotti, N., Comba, A., Manzon, E., Farina, E., Pasqualini, D., Michelotto Tempesta, R., Breschi, L., & Cadenaro, M. (2018). Influence of polymerization time on properties of dual-curing cements in combination with high translucency monolithic zirconia. Journal of prosthodont research, 62(4), 468-472. https://doi.org/10.1016/j.jpor.2018.06.003

Arrais, C. A., Rueggeberg, F. A., Waller, J. L., de Goes, M. F., & Giannini, M. (2008). Effect of curing mode on the polymerization characteristics of dual-cured resin cement systems. Journal of dentistry, 36(6), 418-426. https://doi.org/10.1016/j.jdent.2008.02.014

Braga, R. R., Ballester, R. Y., & Carrilho, M. R. (1999). Pilot study on the early shear strength of porcelain-dentin bonding using dual-cure cements. The Journal of prosthetic dentistry, 81(3), 285-289. https://doi.org/10.1016/s0022-3913(99)70270-2

Braga, R. R., Cesar, P. F., & Gonzaga, C. C. (2002). Mechanical properties of resin cements with different activation modes. Journal of oral rehabilitation, 29(3), 257-262. https://doi.org/10.1046/j.1365-2842.2002.00821.x

Bragança, G. F., Vianna, A. S., Neves, F. D., Price, R. B., & Soares, C. J. (2020). Effect of exposure time and moving the curing light on the degree of conversion and Knoop microhardness of light-cured resin cements. Dental materials : official publication of the Academy of Dental Materials, 36(11), e340-e351. https://doi.org/10.1016/j.dental.2020.08.016

Caughman, W. F., Chan, D. C., & Rueggeberg, F. A. (2001). Curing potential of dual-polymerizable resin cements in simulated clinical situations. The Journal of prosthetic dentistry, 86(1), 101-106. https://doi.org/10.1067/mpr.2001.114842a

Chen, L., Suh, B. I., Gleave, C., Choi, W. J., Hyun, J., & Nam, J. (2016). Effects of light-, self-, and tack-curing on degree of conversion and physical strength of dual-cure resin cements. American journal of dentistry, 29(2), 67-70.

D´Alpino, P. H., Silva, M. S., Vismara, M. V., Di Hipólito, V., Miranda González, A. H., & de Oliveira Graeff, C. F. (2015). The effect of polymerization mode on monomer conversion, free radical entrapment, and interaction with hydroxyapatite of commercial self-adhesive cements. Journal of the mechanical behavior of biomedical materials, 46, 83-92. https://doi.org/ 10.1016/j.jmbbm.2015.02.019

De Munck, J., Vargas, M., Van Landuyt, K., Hikita, K., Lambrechts, P., & Van Meerbeek, B. (2004). Bonding of an auto-adhesive luting material to enamel and dentin. Dental materials : official publication of the Academy of Dental Materials, 20(10), 963-971. https://doi.org/10.1016/j.dental.2004.03.002

El-Badrawy, W. A., & El-Mowafy, O. M. (1995). Chemical versus dual curing of resin inlay cements. The Journal of prosthetic dentistry, 73(6), 515-524. https://doi.org/10.1016/s0022-3913(05)80109-x

El-Mowafy, O. M., Rubo, M. H., & El-Badrawy, W. A. (1999). Hardening of new resin cements cured through a ceramic inlay. Operative dentistry, 24(1), 38-44.

Ferracane, J. L. (1985). Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dental materials : official publication of the Academy of Dental Materials, 1(1), 11-14. https://doi.org/10.1016/S0109-5641(85)80058-0

Ferro, A., Abreu-Pereira, C. A., Pinheiro, E. de S., Ribas, B. R., Pereira, A. L. G., Sousa, R. I. R., Casanovas, R. C., & Moffa, E. B. (2021). Esthetic rehabilitation with ceramic laminates: Case report. Research, Society and Development, 10(6), e54410616141. https://doi.org/10.33448/rsd-v10i6.16141

Frasseto, A., Navarra, C. O., Marchesi, G., Turco, G., Di Lenarda, R., Breschi, L., Ferracane, J. L., & Cadenaro, M. (2012). Kinetics of polymerization and contraction stress development in self-adhesive resin cements. Dental materials : official publication of the Academy of Dental Materials, 28(9), 1032-1039. https://doi.org/10.1016/j.dental.2012.06.003

Hardy, C. M. F., Bebelman, S., Leloup, G., Hadis, M. A., Palin, W. M., & Leprince, J. G. (2018). Investigating the limits of resin-based luting composite photopolymerization through various thicknesses of indirect restorative materials. Dental materials : official publication of the Academy of Dental Materials, 34(9), 1278-1288. https://doi.org/10.1016/j.dental.2018.05.009

Hofmann, N., Papsthart, G., Hugo, B., & Klaiber, B. (2001). Comparison of photo-activation versus chemical or dual-curing of resin-based luting cements regarding flexural strength, modulus and surface hardness. Journal of oral rehabilitation, 28(11), 1022-1028. https://doi.org/10.1046/j.1365-2842.2001.00809.x

Inokoshi, M., Nozaki, K., Takagaki, T., Okazaki, Y., Yoshihara, K., Minakuchi, S., & Van Meerbeek, B. (2021). Initial curing characteristics of composite cements under ceramic restorations. Journal of prosthodontic research, 65(1), 39-45. https://doi.org/ 10.2186/jpr.JPOR_2019_330

Jang, Y., Ferracane, J., Pfeifer, C., Park, J. W., Shin, Y., & Roh, B. D. (2017). Effect of Insufficient Light Exposure on Polymerization Kinetics of Conventional and Self-adhesive Dual-cure Resin Cements. Operative dentistry, 42(1), E1-E9. https://doi.org/10.2341/15-278-L

Kim, H. J., Bagheri, R., Kim, Y. K., Son, J. S., & Kwon, T. Y. (2017). Influence of Curing Mode on the Surface Energy and Sorption/Solubility of Dental Self-Adhesive Resin Cements. Materials (Basel, Switzerland), 10(2), 129. https://doi.org/10.3390/ma10020129

Liporoni, P. C., Ponce, A. C., de Freitas, M. R., Zanatta, R. F., Pereira, M. C., & Catelan, A. (2020). Influence of thickness and translucency of lithium disilicate ceramic on degree of conversion of resinous materials. Journal of clinical and experimental dentistry, 12(8), e745-e748. https://doi.org/10.4317/jced.56921

Lise, D. P., Van Ende, A., De Munck, J., Yoshihara, K., Nagaoka, N., Cardoso Vieira, L. C., & Van Meerbeek, B. (2018). Light irradiance through novel CAD-CAM block materials and degree of conversion of composite cements. Dental materials : official publication of the Academy of Dental Materials, 34(2), 296-305. https://doi.org/10.1016/j.dental.2017.11.008

Majumder, A., Giri, T. K., & Mukherjee, S. (2019). An in vitro study to compare the influence of different all-ceramic systems on the polymerization of dual-cure resin cement. Journal of Indian Prosthodontic Society, 19(1), 58-65. https://doi.org/10.4103/jips.jips_262_18

Martins, F. V., Vasques, W. F., & Fonseca, E. M. (2019). How the Variations of the Thickness in Ceramic Restorations of Lithium Disilicate and the Use of Different Photopolymerizers Influence the Degree of Conversion of the Resin Cements: A Systematic Review and Meta-Analysis. Journal of prosthodontics: official journal of the American College of Prosthodontists, 28(1), e395–e403. https://doi.org/10.1111/jopr.12920

Niemi, A., Perea-Lowery, L., Alaqeel, S. M., Ramakrishnaiah, R., & Vallittu, P. K. (2020). Dual-curing resin cement with colour indicator for adhesively cemented restorations to dental tissues: Change of colour by curing and some physical properties. Saudi journal of biological sciences, 27(1), 395-400. https://doi.org/10.1016/j.sjbs.2019.10.009

Pegoraro, T. A. (2010). Efeito do protocolo de ativação da polimerização e envelhecimento acelerado em algumas propriedades de cimentos resinosos [tese]. Universidade de São Paulo, Faculdade de Odontologia de Bauru.

Peutzfeldt, A. (1997). Resin composites in dentistry: the monomer systems. European journal of oral sciences, 105(2), 97-116. https://doi.org/10.1111/j.1600-0722.1997.tb00188.x

Radovic, I., Monticelli, F., Goracci, C., Vulicevc, Z. R., & Ferrari, M. (2008). Self-adhesive resin cements: a literature review. The journal of adhesive dentistry, 10(4), 251-258. https://doi.org/10.3290/j.jad.a13735

Rizzante, F. A. P., Locatelli, P. M., Porto, T. S., Borges, A. F. S., Mondelli, R. F. L., & Ishikiriama, S. K. (2018). Physico-mechanical properties of resin cement light cured through different ceramic spacers. Journal of the mechanical behavior of biomedical materials, 85, 170-174. https://doi.org/10.1016/j.jmbbm.2018.06.001

Schmid-Schwap, M., Franz, A., König, F., Bristela, M., Lucas, T., Piehslinger, E., Watts, D.C., & Schedle, A. (2009). Cytotoxicity of four categories of dental cements. Dental materials : official publication of the Academy of Dental Materials, 25(3), 360-368. https://doi.org/10.1016/j.dental.2008.08.002

Shim, J. S., Kang, J. K., Jha, N., & Ryu, J. J. (2017). Polymerization Mode of Self-Adhesive, Dual-Cured Dental Resin Cements Light Cured Through Various Restorative Materials. Journal of esthetic and restorative dentistry: official publication of the American Academy of Esthetic Dentistry ... [et al.], 29(3), 209-214. https://doi.org/10.1111/jerd.12285

Shim, J. S., Han, S. H., Jha, N., Hwang, S. T., Ahn, W., Lee, J. Y., & Ryu, J. J. (2018). Effect of Irradiance and Exposure Duration on Temperature and Degree of Conversion of Dual-Cure Resin Cement for Ceramic Restorations. Operative dentistry, 43(6), E280-E287. https://doi.org/10.2341/17-283-L

Spinell, T., Schedle, A., & Watts, D.C. (2009). Polymerization shrinkage kinetics of dimethacrylate resin-cements. Dental materials : official publication of the Academy of Dental Materials, 25(8), 1058-1066. https://doi.org/10.1016/j.dental.2009.04.008

Suh, B. I., Feng, L., Pashley, D. H., & Tay, F. R. (2003). Factors contributing to the incompatibility between simplified-step adhesives and chemically cured or dual-cured composites. Part III. Effect of acidic monomers. The journal of adhesive dentistry, 5(4), 267-282.

Tafur-Zelada, C. M., Carvalho, O., Silva, F. S., Henriques, B., Özcan, M., & Souza, J. C. M. (2021). The influence of zirconia veneer thickness on the degree of conversion of resin-matrix cements: an integrative review. Clinical oral investigations, 25(6), 3395-3408. https://doi.org/10.1007/s00784-021-03904-w

Tosco, V., Monterubbianesi, R., Orilisi, G., Sabbatini, S., Conti, C., Özcan, M., Putignano, A., & Orsini, G. (2021). Comparison of two curing protocols during adhesive cementation: Can the step luting technique supersede the traditional one? Odontology, 109(2), 433-439. https://doi.org/10.1007/s10266-020-00558-0

Turp, V., Turkoglu, P., & Sen, D. (2018). Influence of monolithic lithium disilicate and zirconia thickness on polymerization efficiency of dual-cure resin cements. Journal of esthetic and restorative dentistry : official publication of the American Academy of Esthetic Dentistry ... [et al.], 30(4), 360-368. https://doi.org/10.1111/jerd.12390

Vrochary, A. D., Eliades, G., Hellwig, E., & Wrbas, K. T. (2009). Curing efficiency of four self-etching, self-adhesive resin cements. Dental materials : official publication of the Academy of Dental Materials, 25(9), 1104-1108. https://doi.org/10.1016/j.dental.2009.02.015

Watts, D. C., & Cash, A. J. (1994). Analysis of optical transmission by 400-500 nm visible light into aesthetic dental biomaterials. Journal of dentistry, 22(2), 112-117. https://doi.org/10.1016/0300-5712(94)90014-0

Watts, D. C. (2005). Reaction kinetics and mechanics in photo-polymerized networks. Dental materials : official publication of the Academy of Dental Materials, 21(1), 27-35. https://doi.org/ 10.1016/j.dental.2004.10.003

Downloads

Published

24/07/2021

How to Cite

GORDILHO, A. C.; SWERTS, D. M. O. .; MIRANDA, M. E. .; BOARO, L. C. .; BRANDT, W. C. . Degree of conversion and cohesive strength of conventional dual resin and self-adhesive cements by using of different forms of activation. Research, Society and Development, [S. l.], v. 10, n. 9, p. e20910917850, 2021. DOI: 10.33448/rsd-v10i9.17850. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17850. Acesso em: 18 sep. 2021.

Issue

Section

Health Sciences