Grau de conversão e resistência coesiva de cimentos resinosos duais convencionais e autoadesivos através de diferentes formas de ativação

Autores

DOI:

https://doi.org/10.33448/rsd-v10i9.17850

Palavras-chave:

Cimentos de Resina; Polimerização; Propriedades físicas.

Resumo

O objetivo deste estudo foi avaliar o grau de conversão (GC) e a resistência coesiva a tração (RC) de dois cimentos resinosos convencionais duais e um cimento resinoso autoadesivo usando diferentes formas de ativação. Dois cimentos resinosos convencionais (Variolink II e RelyX ARC) e um cimento resinoso autoadesivo foram polimerizados sob três diferentes formas de ativação nomeados como Quimicamente Ativado (QA), Fotoativado com Interposição de um disco de resina (FI) e Fotoativado (F). O GC foi avaliado usando espectroscopia infravermelho transformada de Fourier - FTIR (Spectrum 100). No teste de RC, as amostras foram testadas até a fratura em uma máquina de ensaio universal (Instron 4411). Os valores médios obtidos nos testes de GC e RC foram avaliados utilizando análise de variância (ANOVA) de dois fatores (cimento e ativação) e teste de Tukey (p≤0,05). Independentemente do modo de ativação, RelyX ARC obteve os maiores valores de GC e RelyX U200 os menores valores e o Variolink II valores intermediários. O grupo dos F sempre obtiveram maiores valores que o grupo dos QA para GC e RC. Entre os cimentos resinosos, independentemente do modo de ativação, não existiu diferenças nos valores de RC. O modo ativação química dos cimentos resinosos duais levou a menores valores de GC e RC. O cimento RelyX ARC obteve os maiores valores de GC e o cimento RelyX U200 os menores valores, entretanto, em relação a RC, não houve diferenças.

Referências

Almeida, C. M., Meereis, C. T. W., Leal, F. B., Ogliari, A. O., Piva, E., & Ogliari, F. A. (2018). Evaluation of long-term bond strength and selected properties of self-adhesive resin cements. Brazilian oral research, 32, e15. https://doi.org/10.1590/1807-3107bor- 2018.vol32.0015

Alovisi, M., Scotti, N., Comba, A., Manzon, E., Farina, E., Pasqualini, D., Michelotto Tempesta, R., Breschi, L., & Cadenaro, M. (2018). Influence of polymerization time on properties of dual-curing cements in combination with high translucency monolithic zirconia. Journal of prosthodont research, 62(4), 468-472. https://doi.org/10.1016/j.jpor.2018.06.003

Arrais, C. A., Rueggeberg, F. A., Waller, J. L., de Goes, M. F., & Giannini, M. (2008). Effect of curing mode on the polymerization characteristics of dual-cured resin cement systems. Journal of dentistry, 36(6), 418-426. https://doi.org/10.1016/j.jdent.2008.02.014

Braga, R. R., Ballester, R. Y., & Carrilho, M. R. (1999). Pilot study on the early shear strength of porcelain-dentin bonding using dual-cure cements. The Journal of prosthetic dentistry, 81(3), 285-289. https://doi.org/10.1016/s0022-3913(99)70270-2

Braga, R. R., Cesar, P. F., & Gonzaga, C. C. (2002). Mechanical properties of resin cements with different activation modes. Journal of oral rehabilitation, 29(3), 257-262. https://doi.org/10.1046/j.1365-2842.2002.00821.x

Bragança, G. F., Vianna, A. S., Neves, F. D., Price, R. B., & Soares, C. J. (2020). Effect of exposure time and moving the curing light on the degree of conversion and Knoop microhardness of light-cured resin cements. Dental materials : official publication of the Academy of Dental Materials, 36(11), e340-e351. https://doi.org/10.1016/j.dental.2020.08.016

Caughman, W. F., Chan, D. C., & Rueggeberg, F. A. (2001). Curing potential of dual-polymerizable resin cements in simulated clinical situations. The Journal of prosthetic dentistry, 86(1), 101-106. https://doi.org/10.1067/mpr.2001.114842a

Chen, L., Suh, B. I., Gleave, C., Choi, W. J., Hyun, J., & Nam, J. (2016). Effects of light-, self-, and tack-curing on degree of conversion and physical strength of dual-cure resin cements. American journal of dentistry, 29(2), 67-70.

D´Alpino, P. H., Silva, M. S., Vismara, M. V., Di Hipólito, V., Miranda González, A. H., & de Oliveira Graeff, C. F. (2015). The effect of polymerization mode on monomer conversion, free radical entrapment, and interaction with hydroxyapatite of commercial self-adhesive cements. Journal of the mechanical behavior of biomedical materials, 46, 83-92. https://doi.org/ 10.1016/j.jmbbm.2015.02.019

De Munck, J., Vargas, M., Van Landuyt, K., Hikita, K., Lambrechts, P., & Van Meerbeek, B. (2004). Bonding of an auto-adhesive luting material to enamel and dentin. Dental materials : official publication of the Academy of Dental Materials, 20(10), 963-971. https://doi.org/10.1016/j.dental.2004.03.002

El-Badrawy, W. A., & El-Mowafy, O. M. (1995). Chemical versus dual curing of resin inlay cements. The Journal of prosthetic dentistry, 73(6), 515-524. https://doi.org/10.1016/s0022-3913(05)80109-x

El-Mowafy, O. M., Rubo, M. H., & El-Badrawy, W. A. (1999). Hardening of new resin cements cured through a ceramic inlay. Operative dentistry, 24(1), 38-44.

Ferracane, J. L. (1985). Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dental materials : official publication of the Academy of Dental Materials, 1(1), 11-14. https://doi.org/10.1016/S0109-5641(85)80058-0

Ferro, A., Abreu-Pereira, C. A., Pinheiro, E. de S., Ribas, B. R., Pereira, A. L. G., Sousa, R. I. R., Casanovas, R. C., & Moffa, E. B. (2021). Esthetic rehabilitation with ceramic laminates: Case report. Research, Society and Development, 10(6), e54410616141. https://doi.org/10.33448/rsd-v10i6.16141

Frasseto, A., Navarra, C. O., Marchesi, G., Turco, G., Di Lenarda, R., Breschi, L., Ferracane, J. L., & Cadenaro, M. (2012). Kinetics of polymerization and contraction stress development in self-adhesive resin cements. Dental materials : official publication of the Academy of Dental Materials, 28(9), 1032-1039. https://doi.org/10.1016/j.dental.2012.06.003

Hardy, C. M. F., Bebelman, S., Leloup, G., Hadis, M. A., Palin, W. M., & Leprince, J. G. (2018). Investigating the limits of resin-based luting composite photopolymerization through various thicknesses of indirect restorative materials. Dental materials : official publication of the Academy of Dental Materials, 34(9), 1278-1288. https://doi.org/10.1016/j.dental.2018.05.009

Hofmann, N., Papsthart, G., Hugo, B., & Klaiber, B. (2001). Comparison of photo-activation versus chemical or dual-curing of resin-based luting cements regarding flexural strength, modulus and surface hardness. Journal of oral rehabilitation, 28(11), 1022-1028. https://doi.org/10.1046/j.1365-2842.2001.00809.x

Inokoshi, M., Nozaki, K., Takagaki, T., Okazaki, Y., Yoshihara, K., Minakuchi, S., & Van Meerbeek, B. (2021). Initial curing characteristics of composite cements under ceramic restorations. Journal of prosthodontic research, 65(1), 39-45. https://doi.org/ 10.2186/jpr.JPOR_2019_330

Jang, Y., Ferracane, J., Pfeifer, C., Park, J. W., Shin, Y., & Roh, B. D. (2017). Effect of Insufficient Light Exposure on Polymerization Kinetics of Conventional and Self-adhesive Dual-cure Resin Cements. Operative dentistry, 42(1), E1-E9. https://doi.org/10.2341/15-278-L

Kim, H. J., Bagheri, R., Kim, Y. K., Son, J. S., & Kwon, T. Y. (2017). Influence of Curing Mode on the Surface Energy and Sorption/Solubility of Dental Self-Adhesive Resin Cements. Materials (Basel, Switzerland), 10(2), 129. https://doi.org/10.3390/ma10020129

Liporoni, P. C., Ponce, A. C., de Freitas, M. R., Zanatta, R. F., Pereira, M. C., & Catelan, A. (2020). Influence of thickness and translucency of lithium disilicate ceramic on degree of conversion of resinous materials. Journal of clinical and experimental dentistry, 12(8), e745-e748. https://doi.org/10.4317/jced.56921

Lise, D. P., Van Ende, A., De Munck, J., Yoshihara, K., Nagaoka, N., Cardoso Vieira, L. C., & Van Meerbeek, B. (2018). Light irradiance through novel CAD-CAM block materials and degree of conversion of composite cements. Dental materials : official publication of the Academy of Dental Materials, 34(2), 296-305. https://doi.org/10.1016/j.dental.2017.11.008

Majumder, A., Giri, T. K., & Mukherjee, S. (2019). An in vitro study to compare the influence of different all-ceramic systems on the polymerization of dual-cure resin cement. Journal of Indian Prosthodontic Society, 19(1), 58-65. https://doi.org/10.4103/jips.jips_262_18

Martins, F. V., Vasques, W. F., & Fonseca, E. M. (2019). How the Variations of the Thickness in Ceramic Restorations of Lithium Disilicate and the Use of Different Photopolymerizers Influence the Degree of Conversion of the Resin Cements: A Systematic Review and Meta-Analysis. Journal of prosthodontics: official journal of the American College of Prosthodontists, 28(1), e395–e403. https://doi.org/10.1111/jopr.12920

Niemi, A., Perea-Lowery, L., Alaqeel, S. M., Ramakrishnaiah, R., & Vallittu, P. K. (2020). Dual-curing resin cement with colour indicator for adhesively cemented restorations to dental tissues: Change of colour by curing and some physical properties. Saudi journal of biological sciences, 27(1), 395-400. https://doi.org/10.1016/j.sjbs.2019.10.009

Pegoraro, T. A. (2010). Efeito do protocolo de ativação da polimerização e envelhecimento acelerado em algumas propriedades de cimentos resinosos [tese]. Universidade de São Paulo, Faculdade de Odontologia de Bauru.

Peutzfeldt, A. (1997). Resin composites in dentistry: the monomer systems. European journal of oral sciences, 105(2), 97-116. https://doi.org/10.1111/j.1600-0722.1997.tb00188.x

Radovic, I., Monticelli, F., Goracci, C., Vulicevc, Z. R., & Ferrari, M. (2008). Self-adhesive resin cements: a literature review. The journal of adhesive dentistry, 10(4), 251-258. https://doi.org/10.3290/j.jad.a13735

Rizzante, F. A. P., Locatelli, P. M., Porto, T. S., Borges, A. F. S., Mondelli, R. F. L., & Ishikiriama, S. K. (2018). Physico-mechanical properties of resin cement light cured through different ceramic spacers. Journal of the mechanical behavior of biomedical materials, 85, 170-174. https://doi.org/10.1016/j.jmbbm.2018.06.001

Schmid-Schwap, M., Franz, A., König, F., Bristela, M., Lucas, T., Piehslinger, E., Watts, D.C., & Schedle, A. (2009). Cytotoxicity of four categories of dental cements. Dental materials : official publication of the Academy of Dental Materials, 25(3), 360-368. https://doi.org/10.1016/j.dental.2008.08.002

Shim, J. S., Kang, J. K., Jha, N., & Ryu, J. J. (2017). Polymerization Mode of Self-Adhesive, Dual-Cured Dental Resin Cements Light Cured Through Various Restorative Materials. Journal of esthetic and restorative dentistry: official publication of the American Academy of Esthetic Dentistry ... [et al.], 29(3), 209-214. https://doi.org/10.1111/jerd.12285

Shim, J. S., Han, S. H., Jha, N., Hwang, S. T., Ahn, W., Lee, J. Y., & Ryu, J. J. (2018). Effect of Irradiance and Exposure Duration on Temperature and Degree of Conversion of Dual-Cure Resin Cement for Ceramic Restorations. Operative dentistry, 43(6), E280-E287. https://doi.org/10.2341/17-283-L

Spinell, T., Schedle, A., & Watts, D.C. (2009). Polymerization shrinkage kinetics of dimethacrylate resin-cements. Dental materials : official publication of the Academy of Dental Materials, 25(8), 1058-1066. https://doi.org/10.1016/j.dental.2009.04.008

Suh, B. I., Feng, L., Pashley, D. H., & Tay, F. R. (2003). Factors contributing to the incompatibility between simplified-step adhesives and chemically cured or dual-cured composites. Part III. Effect of acidic monomers. The journal of adhesive dentistry, 5(4), 267-282.

Tafur-Zelada, C. M., Carvalho, O., Silva, F. S., Henriques, B., Özcan, M., & Souza, J. C. M. (2021). The influence of zirconia veneer thickness on the degree of conversion of resin-matrix cements: an integrative review. Clinical oral investigations, 25(6), 3395-3408. https://doi.org/10.1007/s00784-021-03904-w

Tosco, V., Monterubbianesi, R., Orilisi, G., Sabbatini, S., Conti, C., Özcan, M., Putignano, A., & Orsini, G. (2021). Comparison of two curing protocols during adhesive cementation: Can the step luting technique supersede the traditional one? Odontology, 109(2), 433-439. https://doi.org/10.1007/s10266-020-00558-0

Turp, V., Turkoglu, P., & Sen, D. (2018). Influence of monolithic lithium disilicate and zirconia thickness on polymerization efficiency of dual-cure resin cements. Journal of esthetic and restorative dentistry : official publication of the American Academy of Esthetic Dentistry ... [et al.], 30(4), 360-368. https://doi.org/10.1111/jerd.12390

Vrochary, A. D., Eliades, G., Hellwig, E., & Wrbas, K. T. (2009). Curing efficiency of four self-etching, self-adhesive resin cements. Dental materials : official publication of the Academy of Dental Materials, 25(9), 1104-1108. https://doi.org/10.1016/j.dental.2009.02.015

Watts, D. C., & Cash, A. J. (1994). Analysis of optical transmission by 400-500 nm visible light into aesthetic dental biomaterials. Journal of dentistry, 22(2), 112-117. https://doi.org/10.1016/0300-5712(94)90014-0

Watts, D. C. (2005). Reaction kinetics and mechanics in photo-polymerized networks. Dental materials : official publication of the Academy of Dental Materials, 21(1), 27-35. https://doi.org/ 10.1016/j.dental.2004.10.003

Downloads

Publicado

24/07/2021

Como Citar

GORDILHO, A. C.; SWERTS, D. M. O. .; MIRANDA, M. E. .; BOARO, L. C. .; BRANDT, W. C. . Grau de conversão e resistência coesiva de cimentos resinosos duais convencionais e autoadesivos através de diferentes formas de ativação. Research, Society and Development, [S. l.], v. 10, n. 9, p. e20910917850, 2021. DOI: 10.33448/rsd-v10i9.17850. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17850. Acesso em: 22 nov. 2024.

Edição

Seção

Ciências da Saúde