Exposure to agricultural defenders: Systemic pathophysiological guides from muscarinic and nicotinic cholinergic receptors

Authors

DOI:

https://doi.org/10.33448/rsd-v10i9.18193

Keywords:

Pesticides; Pathophysiology; Cholinergic receptors.

Abstract

Pesticides or agrochemicals are groups of substances where they act in the agricultural environment, in order to control different elements that hinder the cultivation of plantations, they are generally used by occupational workers at rural level in order to increase production in the fields and eradicate diseases and pests there existing, such improper use can cause damage to human health, animals and even the environment. This research has as a general objective to identify the use of pesticides as possible pathophysiological guides from a detailed approach to the action of the chemicals involved and the biomolecular signals at the level of the central nervous system. As a methodology, it is an integrative review study in which it was adopted for the collection of data for the survey by review of journals, using the following electronic databases of indexed data: Scientific Eletronic Library, Latin American and Caribbean Literature in Health Sciences and US National Library of Medicine National Institutes of Health. The results presented reveal classes of pesticides induces an increase in cytochrome P-450 (CYP), elevation in reactive oxygen species (ROS), in addition to altered reaction of the antioxidant enzyme (SOD and catalase), changes in thyroid stimulating hormone parameters (TSH), accompanied by low activities of SOD, CAT and glutathione S-transferase (GST), synthesis of cytokines such as interferon gamma γ and tumor necrosis factor α. TNFα resulting from neurotoxicity. Thus, agrochemicals are cholinesterase inhibitors and are of primary nature for signaling changes in other pathophysiological processes.

References

Alahakoona, C. B., et al (2017). Can we predict intermediate syndrome? A review. Neurotoxicology. 69:209-216.

Almeida, V. E. S., et al (2017) Uso de sementes geneticamente modificadas e agrotóxicos no Brasil: cultivando perigos. Ciência & Saúde Coletiva, 22(10):3333-3339.

Altenhofen S (2017). Envolvimento Dos Sistemas Purinérgico, Colinérgico E Dopaminérgico Na Neurotoxicidade Induzida Por Metais E Agrotóxicos Em Peixe-Zebra (Danio rerio). 2017. 60f. Tese de doutorado do Programa de Pós-Graduação em Biologia Celular e Molecular da Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul. Porto Alegre – RS.

Berne & Levy (2018). Fisiologia / editores Bruce M. Koeppen, Bruce A. Stanton, tradução Soraya Imon de Oliveira. (7a ed.), Elsevier.

Bajracharya, S. R., et al (2016). Management of Organophosphorous Poisoning. J Nepal Health Res Counc. 14(34):131-8.

Basaure, P., et al (2018). Postnatal chlorpyrifos exposure and apolipoprotein E (APOE) genotype differentiallyaffect cholinergic expression and developmental parameters in transgenic mice. Food Chem Toxicol, 118:42-52.

Brent, A., Vogt. Cingulate impairments in ADHD: Comorbidities, connections, and treatment. Handbook of Clinical Neurology, Vol. 166 (3rd series) Cingulate Cortex, 2019.

Cordeiro, L. W. (2016). Marcadores da Função Tireoidiana em uma População Rural Exposta a Agrotóxicos. 2016, 100f. Dissertação de mestrado do Programa de PósGraduação em Ciências Aplicadas à Saúde da Universidade Federal de Sergipe, Lagarto-SE.

Coleman, B., et al (2018). Modulation of Gq-Rho signaling by the ERK MAPK pathway controls locomotion in Caenorhabditis elegans. Genetics: Early Online, Jun,209(2):523-535.

Crosby, E. Y. B., et al (2015). Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish. Neurotoxicology and Teratology ,49, 81–90.

Cattani, D., et al 2017). Developmental Exposure To Glyphosate-Based Herbicide Depressive-Like Behavior In Adult Offspring: Implication Of Glutamate Excitotoxicity And Oxidative Stress. Toxicology. 387, 67-80.

Casida, J. E. (2018). Neonicotinoids and Other Insect Nicotinic Receptor Competitive Modulators: Progress and Prospects. Annu. Rev. Entomol. 63:125-144.

Copelli, F. H. S., et al (2019). Empreendedorismo na Enfermagem: revisão integrativa da literatura. Rev Bras Enferm [Internet].72(Suppl 1):301-10.

Chaguri, J. L. (2016). Efeitos da exposição ao pesticida fipronil nas alterações pressóricas em ratos acordados. 2016, 49f. Dissertação de mestrado do Instituto de Biociências, Campus de Botucatu, Unesp, em Farmacologia e Biotecnologia. Botucatu.

Doo-San, P., et al (2015). Highly selective biomarkers for pesticides developed in Eisenia fetida using SELDI-TOF MS. environmental toxicology and pharmacology, 39, 635–642.

El-Nahhal, Y., & Lubbad, R. (2018). Acute and single repeated dose effects of low concentrations of chlorpyrifos, diuron, and their combination on chicken. Environmental Science and Pollution Research. 25, 10837–10847.

Fereidouni, S., et al 2019). Quercetin plays protective role in oxidativeinducedapoptotic events during chronic chlorpyrifos exposure to rats. J Biochem Mol Toxicol. 22341.

Fields, R., et al (2017). Cholinergic Signaling in Myelination. Review Article. 65, 65:687–698.

Faro, L. R. F., et al (2019). Clothianidin, a neonicotinoid insecticide, activates α4β2, α7 and muscarinic receptors to induce in vivo dopamine release from rat striatum. Toxicology, 426, 152285.

Faria, M., et al (2019). Deciphering the mode of action of pollutants impairing the fish larvae escape response

Guyton & Hall (2017). Tratado De Fisiologia Médica, Hall, JE, Elsevier, (13a ed.),

Gutta, S., et al (2019). Hepatotoxicity and neurotoxicity of Fipronil poisoning in human: A case report. J Family Med Prim Care. 2019 Oct 31,8(10):3437-3439.

Gutierrez, W. (2015). Caracterização das exposições a pesticidas entre 2006 e 2013 reportadas ao Centro de Informações Toxicológicas da Pontífia Universidade Católica do Chile. Rev. Méd. Chile, 143, 1269-1276, 2015.

González-Alzaga, B., et al (2014). A systematic review of neurodevelopmental effects of prenatal and postnatal organophosphate pesticide exposure. Toxicol Lett. 230(2):104-121.

Golan, D. E, et al (2014). Princípios de Farmacologia: A base Fisiopatológica da terapêutica, (3a ed.), Guanabara Koogan, 2014.

Galvez, B., Gross, N., & Sumikawa, K. (2016). Activation of α7 nicotinic acetylcholine receptors protects potentiated synapses from depotentiation during theta pattern stimulation in the hippocampal CA1 region of rats. Neuropharmacology. 105: 378–387.

Guardia-Escote, L., et al 2018). Postnatal exposure to chlorpyrifos produces long-term effects on spatial memory and the cholinergic system in mice in a sex- and APOE genotype-dependent manner. Food Chem Toxicol. ,122:1-10.

Gargouri, B. G., et al (2018). Inflammatory and oxidative mechanisms potentiate bifenthrin-induced neurological alterations and anxiety-like behavior in adult rats. Toxicology Letters 294, 73–86.

Gargouri, B., et al (2018). Inflammatory and oxidative mechanisms potentiate bifenthrin-induced neurological alterations and anxiety-like behavior in adult rats. Toxicology Letters, 294, 73–86.

Greer, J. B., et al (2019). Schlenk. Effects of Chlorpyrifos on Cholinesterase and Serine Lipase Activities and Lipid Metabolism in Brains of Rainbow Trout (Oncorhynchus mykiss). Toxicol Sci. 30,172(1):146-154.

Gorecki, L., et al (2016). Sar study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch Toxicol, 90(12):2831-2859.

Horn, R. C. (2016). Avaliação “in vitro” do efeito da infusão de Cunila microcephala Benth sobre a atividade da enzima acetilcolinesterase e biomarcadores de estresse oxidativo em eritrócitos de agricultores. Rev. Bras. Pl. Med., Campinas, 18, 341-348.

Hannah, H., & Ricarda, S (2019). The novel pesticide flupyradifurone (Sivanto) affects honeybee motor abilities. Ecotoxicology, 28(3):354-366.

Hesselbach, H., & Scheine, R (2019). The novel pesticide flupyradifurone (Sivanto) affects honeybee motor abilities. Ecotoxicology volume 28, pages354–366. with the vibrational startle response assay. Science of the Total Environment 672,121–128.

John, H., et al (2015). Small-scale purification of butyrylcholinesterase from human plasma and implementation of a μLC-UV/ESI MS/MS method to detect its organophosphorus adducts. Drug Test. Analysis Copyright, 7(10):947-56.

Jallouli, M., et al (2016). Disruption of steroidogenesis after dimethoate exposure and efficacy of N-acetylcysteine in rats: an old drug with new approaches. Environ Sci Pollut Res.Apr,23(8):7975-84.

Judge, S J, et al (2016). Mechanism for the acute effects of organophosphate pesticides on the adult 5-HT system. Chemico-Biological Interactions 245, 82-89.

Kumar, N, et al (2016). Dietary Pyridoxine Protects against Stress and Maintains Immunohaematological Status in Chanos chanos Exposed to Endosulfan. 2016 Basic Clin Pharmacol Toxicol.Sep 119(3):297-308.

Kaur, S, et al (2019). Neuro-protective potential of quercetin during chlorpyrifos induced neurotoxicity in rats. Drug And Chemical Toxicology, 1525-6014.

Kumar, V, et al (2015). Molecular Mechanism of Switching of TrkA/p75NTR Signaling in Monocrotophos Induced Neurotoxicity. Scientific Reports, 5:14038.

Kalinnikova, T B., et al (2016). Opposite effects of moderate heat stress and hyperthermia on cholinergic system of soil n e m a t o d e s Caenorhabditis elegans and Caenorhabditis briggsae. J Therm Biol. 62(Pt A):37-49.

Kashyap, M P., et al (2015). Correction to: Differentiating neurons derived fromhuman umbilical cord blood stem cells work as a test system for developmental neurotoxicity. Mol Neurobiol. 51:791–807.

Lockridge, O, et al (2016). Naturally Occurring Genetic Variants of Human Acetylcholinesterase and Butyrylcholinesterase and Their Potential Impact on the Risk of Toxicity from Cholinesterase Inhibitors. Chem. Res. Toxicol. Sep 19,29(9):1381-92.

Lee, I, et al (2015). Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl. Toxicol Appl Pharmacol. Nov 1,288(3):429-38.

Lavezzi, A. M., et al (2015). Pesticide exposure during pregnancy, like nicotine, affects the brainstem α7 nicotinic acetylcholine receptor expression, increasing the risk of sudden unexplained perinatal death. Journal of the Neurological Sciences 348. 94–100.

Liu, J, Pope C (2015). The cannabinoid receptor antagonist AM251 increases paraoxon and chlorpyrifos oxon toxicity in rats. NeuroToxicology 46, 12–18.

Lozano-Paniagua, D, et al (2018). Biomarkers of oxidative stress in blood of workers exposed to noncholinesterase inhibiting pesticides. Ecotoxicology and Environmental Safety 162. 121–128.

Lopes, F, et al (2016) Involvement of Mast Cells in a7 Nicotinic Receptor Agonist Exacerbation of Freund’s Complete Adjuvant–Induced Monoarthritis in Mice. ARTHRITIS & RHEUMATOLOGY. 68, 542–552.

Moraes, B. F (2019). Cenário Global com Pesquisas Envolvendo Contaminantes Agrícolas em Sistema Endócrino de Peixe. 2019. 49f. Trabalho de Conclusão de Curso apresentado ao Instituto Federal Goiano.

Mendes, K. D. S., et al (2008). Revisão Integrativa: Método de Pesquisa para a Incorporação de Evidências na Saúde e na Enfermagem. Texto Contexto Enferm, 17(4): 758-64.

Manyilizu, W B, et al (2016). Association of Long-Term Pesticide Exposure and Biologic Parameters in Female Farm Workers in Tanzania: A Cross Sectional Study. Toxics, 4, 25.

Mudawal A, et al (2015). Similarities in Lindane Induced Alterations in Protein Expression Profiling in Different Brain Regions With Neurodegenerative Diseases. Proteomics, 15, 3875–3882.

Meng-Wen, Z, et al (2019). Chlorpyrifos Activates Cell Pyroptosis and Increases Susceptibility on Oxidative Stress-Induced Toxicity by miR-181/SIRT1/PGC-1α/Nrf2 Signaling Pathway in Human Neuroblastoma SH-SY5Y Cells: Implication for Association Between Chlorpyrifos and Parkinson's Disease. Environ Toxicol,34(6):699-707.

Mello, M. C., & Silva, L. F. (2013). Fatores associados à intoxicação por agrotóxicos: estudo transversal com trabalhadores da cafeicultura no sul de Minas Gerais. Epidemiol. Serv. Saúde, 22, 609-620.

Murussi, C, et al (2014). Changes in oxidative markers, endogenous antioxidants and activity of the enzyme acetylcholinesterase in farmers exposed to agricultural pesticides - a pilot study. Ciência Rural, Santa Maria, 44, 1186-1193, jul.

Mladenović, M, et al (2018). The Targeted Pesticides as Acetylcholinesterase Inhibitors: Comprehensive Cross-Organism Molecular Modelling Studies Performed to Anticipate the Pharmacology of Harmfulness to Humans In Vitro. Published online Molecules. Sep, 23(9): 2192.

Marques, P. V., & Caixeta, B. T. (2016). A Importância da Avaliação das Dosagens das Colinesterases em Casos de Intoxicações Por Organofosforados. Psicologia e Saúde em Debate. 2.

Minayo, M. C. (2012). Análise qualitativa: teoria, passos e fidedignidade. Ciência & Saúde Coletiva, 17(3), 621-626.

Naksen, W, et al (2015). Associations of maternal organophosphate pesticide exposure and PON1 activity with birth outcomes in SAWASDEE birth cohort, Thailand. Environmental Research 142, 2015. 288–296.

Proskocil, B. J, et al (2019). Organophosphorus pesticides induce cytokine release from differentiated human THP1 cells. Am J Respir Cell Mol Biol.Nov,61(5):620-630.

Soares, C B, et al (2014). Revisão integrativa: conceitos e métodos utilizados em enfermagem. Rev Esc Enferm USP. 48: 335–45.

Ramírez-Santana, M, et al (2020). Association between cholinesterase's inhibition and cognitive impairment: A basis for prevention policies of environmental pollution by organophosphate and carbamate pesticides in Chile. Environ Res. [Epub ahead of print], 186:109539.

Rolim, C. R. C. (2018). Agrotóxicos e As Repercussões na Saúde dos Trabalhadores Rurais: Revisão de Literatura. Dissertação de mestrado do Programa de Mestrado da Universidade Federal de Campina Grande, em Sistemas Agroindustriais do Centro de Ciência e Tecnologia Agroalimentar - CCTA da UFCG, Campus Pombal. 61f. Pombal.

Reed, B. J, et al (2016). Harnessing Nature’s Diversity: Discovering organophosphate bioscavenger characteristics among low molecular weight proteins. Scientific Reports, 6:37175.

Shihana, F, et al (2019). Evaluation of the accuracy of “ChE check mobile” in measurement of acetylcholinesterase in pesticide poisoning. Clinical Toxicology. Jun,57(6):411-414.

Shi, Q, et al (2018). Developmental neurotoxicity of triphenyl phosphate in zebrafish larvae. Aquatic Toxicology. 203,80–87.

Swale, D. R., & Bloomquist, J. R. (2019). Is DEET a dangerous neurotoxicant? Pest Manag Sci. 75: 2068–2070.

Soukup, O, et al (2017). Acetylcholinesterase Inhibitors and Drugs Acting on Muscarinic Receptors-Potential Crosstalk of Cholinergic Mechanisms During Pharmacological Treatment. Current Neuropharmacology, 15, 637-653.

Soukup, O, et al (2017).. Acetylcholinesterase Inhibitors and Drugs Acting on Muscarinic Receptors- Potential Crosstalk of Cholinergic Mechanisms During Pharmacological Treatment. Curr Neuropharmacol, 15(4): 637–653.

Tufi, S, et al (2015). Metabolomics to Explore Imidacloprid-Induced Toxicity in the Central Nervous System of the Freshwater Snail Lymnaea stagnalis. Environmental Science e Technology, Dec 15,49(24):14529-36.

Teral, K. (2018). An evaluation of neonicotinoids' potential to inhibit human cholinesterases: Proteineligand docking and interaction profiling studies. Journal of Molecular Graphics and Modelling, 84, 54-63.

Ventura, A. L. M. (2019). Sistema colinérgico: revisitando receptores, regulação e a relação com a doença de Alzheimer, esquizofrenia, epilepsia e tabagismo. Rev Psiq Clín. 37(2):66-72.

Vale, A., & Lotti, M. (2015). Organophosphorus and carbamate insecticide poisoning. Handbook of Clinical Neurology, Vol. 131 (3rd series) Occupational Neurology.

Vehovszky, A, et al (2015). Neonicotinoid insecticides inhibit cholinergic neurotransmission in amolluscan (Lymnaea stagnalis) nervous system. Aquatic Toxicology 167. 172–179.

Xie, Q. H., et al (2016). New perspectives for multi-level regulations of neuronal acetylcholinesterase by dioxins. Chemico-Biological Interactions. 1-5.

Zeida, E. H. A., et al (2019). Dose-related impacts of imidacloprid oral intoxication on brain and liver of rock pigeon (Columba livia domestica), residues analysis in different organs. Ecotoxicology and Environmental Safety 167. 60–68.

Zengin, S. S., et al (2015). Effect of paraoxonase 1 192 Q/R polymorphism on paraoxonase and acetylcholinesterase enzyme activities in Turkish population exposed to organophosphate. Toxicology and Industrial Health 1–9,

Zhang, X., et al (2017). Effects of monocrotophos pesticide on cholinergic and dopaminergic neurotransmitter systems during early development in the sea urchin Hemicentrotus pulcherrimus. Toxicol Appl Pharmacol. 328:46-53.

Published

19/07/2021

How to Cite

PORTO, M. de J. .; ROCHA, M. P. .; SOUZA, J. P. de; CREDIDIO, G. C.; TELES, A. L. B. . Exposure to agricultural defenders: Systemic pathophysiological guides from muscarinic and nicotinic cholinergic receptors. Research, Society and Development, [S. l.], v. 10, n. 9, p. e20410918193, 2021. DOI: 10.33448/rsd-v10i9.18193. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18193. Acesso em: 18 sep. 2021.

Issue

Section

Health Sciences