Influence of the adhesive bonding protocol on the inflammatory cellular response and gelatinolytic activity in human teeth




Dentin; Matrix Metalloproteinase 9; Dentin-Bonding Agents.


The aim of this paper was to assess the biocompatibility and expression of metalloproteinase -9 of two dentin bonding agents in human teeth, using different methods of dentin pre-treatment and different time intervals. Deep Class I cavities were prepared on the occlusal surface of 18 sound molars. Restorations were performed with XP Bond™ (Dentsply) and Futurabond® DC (VOCO). After 30, 90 or 120 days, the teeth were extracted and processed for histological and immunohistochemical assessment. In XP Bond group, was observed a moderate inflammatory infiltrate and immunoreactivity of metalloproteinase -9 in all storage intervals. In Futurabond DC group, a slight inflammatory infiltrate was found in the first intervals. After 120 days, the inflammatory infiltrate was either slight or absent, while the tissue morphology remained normal. The immunoreactivity of metalloproteinase -9 was considered moderate, except for two specimen after 120 days, that demonstrated no immunoreactivity. Therefore, etch-and-rinse adhesives exhibited a more intense pulpal response than self-etching agents. When performing adhesive restorations in medium and deep cavities in human teeth, the use of a self-etching adhesive strategy should be considered in view of the lower induction of inflammatory and proteolytic activity. Further studies of molecular events should be conducted, taking into consideration the possible inflammatory pulp reactions that can contribute to the success of restorative procedures.


Accorsi-Mendonça, T., Silva, E. J. N. L., Marcaccini, A. M., Gerlach, R. F., Duarte, K. M. R., Pardo, A. P. S., ... & Zaia, A. A. (2013). Evaluation of gelatinases, tissue inhibitor of matrix metalloproteinase-2, and myeloperoxidase protein in healthy and inflamed human dental pulp tissue. Journal of endodontics, 39(7), 879-882.

Alves, G. C., & Sobral, A. P. V. (2015). Evaluation of biocompatibility of an etch-and-rinse adhesive system based in tertiary butanol applied in deep cavity. The open dentistry journal, 9, 168.

Arrais, C. A. G., & Giannini, M. (2002). Morphology and thickness of the diffusion of resin through demineralized or unconditioned dentinal matrix. Pesquisa Odontológica Brasileira, 16(2), 115-120.

Bagis, B., Atilla, P., Cakar, N., & Hasanreisoglu, U. (2007). Immunohistochemical evaluation of endothelial cell adhesion molecules in human dental pulp: effects of tooth preparation and adhesive application. Archives of oral biology, 52(8), 705-711.

Ballal, V., Rao, S., Bagheri, A., Bhat, V., Attin, T., & Zehnder, M. (2017). MMP-9 in dentinal fluid correlates with caries lesion depth. Caries research, 51(5), 460-465.

Bianchi, L., Ribeiro, A. P. D., de Oliveira Carrilho, M. R., Pashley, D. H., de Souza Costa, C. A., & Hebling, J. (2013). Transdentinal cytotoxicity of experimental adhesive systems of different hydrophilicity applied to ethanol-saturated dentin. Dental Materials, 29(9), 980-990.

Boelen, G. J., Boute, L., d’Hoop, J., EzEldeen, M., Lambrichts, I., & Opdenakker, G. (2019). Matrix metalloproteinases and inhibitors in dentistry. Clinical oral investigations, 23(7), 2823-2835.

Büyükgüral, B., & Cehreli, Z. C. (2008). Effect of different adhesive protocols vs calcium hydroxide on primary tooth pulp with different remaining dentin thicknesses: 24-month results. Clinical Oral Investigations, 12(1), 91-96.

Costa, L. M., Rizuto, A. V., Mendonça, L. S. de, Carvalho, M. V., Silveira, M. M. F., Sobral, A. P. V. (2021). Immunoxpression of MMPs -9, -13 and TIMP-3 after Using Etch-and-rinse Adhesive. Research, Society and Development, 10(9), e14010917315.

da Silva, J. M., Rodrigues, J. R., Camargo, C. H., Fernandes, V. V. B., Hiller, K. A., Schweikl, H., & Schmalz, G. (2014). Effectiveness and biological compatibility of different generations of dentin adhesives. Clinical Oral Investigations, 18(2), 607-613.

De Munck, J., Van den Steen, P. E., Mine, A., Van Landuyt, K. L., Poitevin, A., Opdenakker, G., & Van Meerbeek, B. (2009). Inhibition of enzymatic degradation of adhesive-dentin interfaces. Journal of dental research, 88(12), 1101-1106.

de Souza Costa, C. A., Hebling, J., & Randall, R. C. (2006). Human pulp response to resin cements used to bond inlay restorations. Dental Materials, 22(10), 954-962.

de Souza Costa, C. A., Hebling, J., Scheffel, D. L., Soares, D. G., Basso, F. G., & Ribeiro, A. P. D. (2014). Methods to evaluate and strategies to improve the biocompatibility of dental materials and operative techniques. Dental Materials, 30(7), 769-784.

Elias, S. T., Santos, A. F. D., Garcia, F. C., Pereira, P. N., Hilgert, L. A., Fonseca-Bazzo, Y. M., ... & Ribeiro, A. P. D. (2015). Cytotoxicity of universal, self-etching and etch-and-rinse adhesive systems according to the polymerization time. Brazilian dental journal, 26, 160-168.

Ferracane, J. L., Cooper, P. R., & Smith, A. J. (2010). Can interaction of materials with the dentin-pulp complex contribute to dentin regeneration?. Odontology, 98(1), 2-14.

Gusman, H., Santana, R. B., & Zehnder, M. (2002). Matrix metalloproteinase levels and gelatinolytic activity in clinically healthy and inflamed human dental pulps. European journal of oral sciences, 110(5), 353-357.

Hashimoto, M., Ito, S., Tay, F. R., Svizero, N. R., Sano, H., Kaga, M., & Pashley, D. H. (2004). Fluid movement across the resin-dentin interface during and after bonding. Journal of Dental Research, 83(11), 843-848.

Hebling, J., Giro, E. M. A., & de Souza Costa, C. A. (1999). Biocompatibility of an adhesive system applied to exposed human dental pulp. Journal of Endodontics, 25(10), 676-682.

Hebling, J., Pashley, D. H., Tjäderhane, L., & Tay, F. R. (2005). Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. Journal of dental research, 84(8), 741-746.

Hebling, J., Ribeiro, A. P. D., & Costa, C. A. S. (2010). Relationship between dental materials and the dentin-pulp complex. Rev Odontol Bras Central, 18(48), 1-9.

Huang, F. M., & Chang, Y. C. (2002). Cytotoxicity of resin-based restorative materials on human pulp cell cultures. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 94(3), 361-365.

Kostoryz, E. L., Eick, J. D., Glaros, A. G., Judy, B. M., Welshons, W. V., Burmaster, S., & Yourtee, D. M. (2003). Biocompatibility of hydroxylated metabolites of BISGMA and BFDGE. Journal of dental research, 82(5), 367-371.

Leonardi, D. P., Giovanini, A. F., Almeida, S., Schramm, C. A., & Baratto-Filho, F. (2011). Pulp and periapical pathologies. RSBO (Online), 8(4), 47-61.

Lovász, B. V., Lempel, E., Szalma, J., Sétáló, G., Vecsernyés, M., & Berta, G. (2021). Influence of TEGDMA monomer on MMP-2, MMP-8, and MMP-9 production and collagenase activity in pulp cells. Clinical Oral Investigations, 25(4), 2269-2279.

Machado, N. P., Moysés, M. R., Pereira, A. A. C., Pereira, L. J., Ribeiro, J. C. R., & Dias, S. C. (2016). Study of dentinal adhesives compatibility using histological analysis. Brazilian Journal of Oral Sciences, 1289-1294.

Murray, P. E., Windsor, L. J., Smyth, T. W., Hafez, A. A., & Cox, C. F. (2002). Analysis of pulpal reactions to restorative procedures, materials, pulp capping, and future therapies. Critical Reviews in Oral Biology & Medicine, 13(6), 509-520.

Nowicka, A., Parafiniuk, M., Lipski, M., Lichota, D., & Buczkowska-Radlinska, J. (2012). Pulpo-dentin complex response after direct capping with self-etch adhesive systems. Folia Histochemica et Cytobiologica, 50(4), 565-573.

O'Boskey Jr, F. J., & Panagakos, F. S. (1998). Cytokines stimulate matrix metalloproteinase production by human pulp cells during long-term culture. Journal of endodontics, 24(1), 7-10.

Ozer, F., & Blatz, M. B. (2013). Self-etch and etch-and-rinse adhesive systems in clinical dentistry. Compendium of continuing education in dentistry (Jamesburg, NJ: 1995), 34(1), 12-4.

Pashley, D. H., Tay, F. R., Yiu, C. K. Y., Hashimoto, M., Breschi, L., Carvalho, R., & Ito, S. (2004). Collagen degradation by host-derived enzymes during aging. Journal of dental research, 83(3), 216-221.

Perdigao, J. (2007). New developments in dental adhesion. Dental Clinics of North America, 51(2), 333-357.

Sabatini, C., & Pashley, D. H. (2014). Mechanisms regulating the degradation of dentin matrices by endogenous dentin proteases and their role in dental adhesion. A review. American journal of dentistry, 27(4), 203.

Shafiei, F., Tavangar, M. S., Razmkhah, M., Attar, A., & Alavi, A. A. (2014). Cytotoxic effect of silorane and methacrylate based composites on the human dental pulp stem cells and fibroblasts. Medicina oral, patologia oral y cirugia bucal, 19(4), e350.

Shimada, Y., Ichinose, S., Sadr, A., Burrow, M. F., & Tagami, J. (2009). Localization of matrix metalloproteinases (MMPs‐2, 8, 9 and 20) in normal and carious dentine. Australian dental journal, 54(4), 347-354.

Strobel, S., & Hellwig, E. (2015). The effects of matrix-metallo-proteinases and chlorhexidine on the adhesive bond. Swiss dental journal, 125(2), 134-145.

Sulkala, M., Larmas, M., Sorsa, T., Salo, T., & Tjäderhane, L. (2002). The localization of matrix metalloproteinase-20 (MMP-20, enamelysin) in mature human teeth. Journal of dental research, 81(9), 603-607.

Suyama, Y., De Munck, J., Cardoso, M. V., Yamada, T., & Van Meerbeek, B. (2013). Bond durability of self-adhesive composite cements to dentine. Journal of dentistry, 41(10), 908-917.

Tran-Hung, L., Laurent, P., Camps, J., & About, I. (2008). Quantification of angiogenic growth factors released by human dental cells after injury. Archives of oral biology, 53(1), 9-13.

Van Strijp, A. J. P., Jansen, D. C., DeGroot, J., Ten Cate, J. M., & Everts, V. (2003). Host-derived proteinases and degradation of dentine collagen in situ. Caries Research, 37(1), 58-65.




How to Cite

SOARES, M. U. S. da C. .; COSTA, L. M. .; SILVA, L. P. da .; OLIVEIRA, I. L. M. de; SILVEIRA, M. M. F. da .; SOBRAL, A. P. V. Influence of the adhesive bonding protocol on the inflammatory cellular response and gelatinolytic activity in human teeth. Research, Society and Development, [S. l.], v. 10, n. 9, p. e56610918552, 2021. DOI: 10.33448/rsd-v10i9.18552. Disponível em: Acesso em: 26 sep. 2021.



Health Sciences