Economic analysis of the inclusion of thermoelectric ash in asphalt mixtures

Authors

DOI:

https://doi.org/10.33448/rsd-v10i10.18564

Keywords:

Asphalt mixtures. Thermoelectric ash. Economic viability.; Thermoelectric ash; Economic viability.

Abstract

The replacement of conventional materials used in hot asphalt mixtures with others of good technique and lower cost and environmental impact has motivated research in this area of knowledge in recent decades. The researches should be expanded in the scope of engineering, given that it contributes considerably to the transformation of spaces and raw material. In this context, thermoelectric ashes, which are residues from the production of electric energy, appear as an alternative to replace the stone powder input which contributes negatively to the environment considering that it comes from the blasting of rocks. This work aims to compare the cost of producing traditional asphalt concrete (reference) to asphalt compositions containing 5,15% of alternative material characterized by stone dust. There was a saving of R$ 0.21 per ton of AC machining, consisting of thermoelectric ash as a partial substitute (5.15%) for stone powder, which represents significant savings in a practical context.

References

Bacci, D. L. C. (2006). Aspectos e impactos ambientais de pedreira em área urbana. Esc. Minas, 59.

Confederação Nacional dos Transportes – CNT. (2020). Anuário CNT. https://anuariodotransporte.cnt.org.br/2020.

Dampier, J. E. E., Shahi, C., Lemelin, R. H. et al. (2013). From coal to wood thermoelectric energy production: a review and discussion of potential socio-economic impacts with implications for Northwestern Ontario, Canada. Energ Sustain Soc 3, 11. https://doi-org.ez2.periodicos.capes.gov.br/10.1186/2192-0567-3-11.

Dutta, B. K., Khanra, S. E., & Mallick, D. (2009). Lixiviação de elementos a partir de cinzas volantes de carvão: Avaliação de seu potencial para uso em envase minas de carvão abandonadas. Combustível, 88 (7), 1314–1323.

Erol, M., Küçükbayrak, S., & Ersoy-Meriçboyu, A. (2007) Characterization of coal fly ash for possible utilization in glass production. Fuel 706 – 714.

Hall W., Williams P. (2007). Separation and recovery of materials from scrap printed circuit boards. Resour Conserv Recycl 51:691–709.

Ozdemir, O., Ersoy, B., & Celil, M. S. (2001). Separation of pozzolanic materials from lignitic fly ash of Tuncbilek Power Station. In: Internacional Ash Utilization Symposium, 4, Lexington, Kentucky, USA, Proceedings, University of Kentucky, p. 216 – 234.

Lehmann, J., & Joseph, S. (2009). Biochar for environmental management. Science and technology, Earthscan. 1-12.

Pérez, I. P. Pasandin, A. M. R., Pais, J. C. & Pereira, P. A. A. (2019). Use of lignina biopolymer from industrial waste as bitumen extender for asphalt mixtures. Journal of Cleaner Production.

Singh, M. (2015). Effect of coal bottom ash on strength and durability properties of concrete. Punjab Thesis (ph. D. Civil Engineering) –Thapar University, India, 2015.

Sivapullaiah, P. V. & Moghal, A. A. B. (2010). Lixiviação de rastreamento elementos de duas cinzas volantes indianas estabilizadas de baixo cal. Environ. Terra Sci. 61 (8), 1735-1744.

Tishmack, J .K. (2001). Use of coal combustion by-products to reduce soil erosion. In: Internacional Ash Utilization Symposium, 4, Lexington, Kentucky, USA, Proceedings, University of Kentucky, 216-234.

Tozzi, L. P. (2017). Reciclagem de Placas de Circuito Impresso para Obtenção de Metais Não Ferrosos. Trabalho de Conclusão de Curso apresentado na Universidade Tecnológica Federal do Paraná.

Trombulak, S. C., & Fissell, C. A. (2000). Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology, 14, 18-30.

USEPA (Agência de Proteção Ambiental dos EUA). (2020). Humano e avaliação de risco ecológico de resíduos de combustão de carvão.

Vasudevan, S. (2013). Multicomponent utilization of fly ash: dream or reality. In: International Ash Utilization Symposium, 4, Lexington, Kentucky, USA, Proceedings, University of Kentucky, p. 216 – 234.

Vassilev, S. V., Menendez, R., Alvarez, D., & Borrego, A. G. (2002). Multicomponent utilization of fly ash: dream or reality. In: International Ash Utilization Symposium, 4, Lexington, Kentucky, USA, Proceedings, University of Kentucky, 216 – 234.

Vilches, L. F. (2002). Development of new fire-proof products made from coal fly ash: the Cefyr Project. Journal of Chemical Technology and Biotechnology, 77, 361 – 366.

Wang, H., Derewecki, K. (2020). Rheological Properties of Asphalt Binder Partially Substituted with Wood Lignin. In: Airfield and Highway Pavement: Sustainable and Efficient Pavements. 977-986.

Yang, C, Mills-Beale, J., & You, Z. (2013). Chemical characterization and oxidative aging of bio-asphalt and its compatibility with petroleum asphalt. Journal of Cleaner Production, 142, 1837-1846.

Downloads

Published

04/08/2021

How to Cite

PEREIRA, I. N. A. .; FALCÃO, N. P. de S. .; FROTA, C. A. da . Economic analysis of the inclusion of thermoelectric ash in asphalt mixtures. Research, Society and Development, [S. l.], v. 10, n. 10, p. e28101018564, 2021. DOI: 10.33448/rsd-v10i10.18564. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18564. Acesso em: 2 dec. 2024.

Issue

Section

Engineerings