Use of the SLAM technique associated with structured light mapping for registration and virtualization of historical heritage interiors

Authors

DOI:

https://doi.org/10.33448/rsd-v10i10.18624

Keywords:

LASER; SLAM; Structured light scan; Virtual tour.

Abstract

The representation and documentation of cultural heritage and registration of historic buildings, reconstruction or renovation are invaluable in maintaining the originality of such structures. Currently, the adopted solution is the 3D documentation, using the LASER scanning technique, where the main advantage is the high density of points and radiometric information. This work presents a methodology that applies the SLAM technique associated with the structured light scanning system, which, in addition to allowing the internal mapping of historic buildings, it enables the realization of a virtual tour throughout the mapped environment. The purpose of this work is to carry out the internal mapping of a church, verifying its accuracy and generating a 3D model - allowing the user to interact with the virtual environment and be able to have online access to the interior of the church. Thus, the user will be able to use the measurement tools and information about the works present in the building. In order to evaluate the results of the mapped features, numerical tests were performed that check the measurements of the 3D mapping with the real measurements obtained by a topographic equipment (total station). The results indicate that the analyzes performed show a maximum discrepancy of 1.5 cm between the 3D mapping via SLAM and the real one. Thus, it can be said that the applied methodology is reliable and accurate for several knowledge areas that benefit from three-dimensional modeling and a database to perform a virtual tour.

References

Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S. & Macintyre, B. (2021) .Recent advances in augmented reality. IEEE Computer Graphics And Applications, 21(6), 34-47.Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/38.963459.

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D. Neira, J., Reid, I. & Leonard, J.J. (2016). Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. on Robotics, 32(6), 1309–1332.

Carlone, L., Kaouk Ng, M., Du, J., Bona, B. & Indri, M. (2011). Simultaneous Localization and Mapping Using Rao- Blackwellized Particle Filters in Multi Robot Systems. J Intell Robot Syst, 63, 283-207. http://dx.doi.org/10.1007/s10846-010-9457-0.

Dezen-Kempter, E., Soibelman, L., Chen, M. & Müller Filho, A. V. (2015). Escaneamento 3D a Laser, Fotogrametria e Modelagem da Informação da Construção para Gestão e Operação de Edificações Históricas. Gestão & Tecnologia De Projetos, 10(2), 113-124. https://doi.org/10.11606/gtp.v10i2.102710.

El-Said, O. & Aziz, H. (2021). Virtual Tours a Means to an End: An Analysis of Virtual Tours’ Role in Tourism Recovery Post COVID-19. Journal of Travel Research. https://doi.org/10.1177/0047287521997567.

Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D. & Burgard, W. (2012). An Evaluation of the RGB-D SLAM system. IEEE International Conference on Robotics and Automation, 1691-1696. http://dx.doi.org/10.1109/ICRA.2012.6225199.

Fontelles, M.J., Simões, M.G., Farias, S.H., & Fontelles, R.G.S. (2009). Metodologia da pesquisa científica: diretrizes para a elaboração de um protocolo de pesquisa. Revista Paraense de Medicina, 23(3), 1-8.

Geng, J. (2011). Structured-light 3D surface imaging: a tutorial. Advances in Optics and Photonics, 3, 128-160. http://dx.doi.org/10.1364/aop.3.000128.

Kadobayashi, R., Kochi, N., Otani. H. & Furukawa, R., (2004). Comparison and evaluation of laser scanning and photogrammetry and their combined use for digital recording of cultural heritage. Int. Arch. Photogramm. Remote Sens. Spatial Inf. 35(5), 401-406.

Kaijaluoto, R., Kukko, A. & Hyyppä, J. (2015). Precise indoor localization for mobile laser scanner. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1-6.

Li, T-Y., Lien, J-M., Chiu, S-Y. & Yu, T-H. (1999). Automatically generating virtual guided tours. Proceedings Computer Animation, 99-106, http://dx.doi//10.1109/CA.1999.781203.

Leonard, J.J. & Durrant-Whyte, H.F. (1991). Mobile robot localization by tracking geometric beacons. IEEE Transactions On Robotics And Automation, 7(3), 376-382. http://dx.doi.org/10.1109/70.88147.

Matterport, (2019). Matterport Pro 3D Camera specifications. https://matterport.com/pro2-3d-camera.

Milgram, P., Takemura, H., Utsumi, A. & Kishino, F. (1995) Augmented reality: a class of displays on the reality-virtuality continuum. Telemanipulator And Telepresence Technologies, 282-292. http://dx.doi.org/10.1117/12.197321.

Osman, A., Baharin, H., Ismail, M. & Jusoff, K. (2009). Paper prototyping as a rapid participatory design technique. Computer and Information Science 2(3), 173-182. http://dx.doi.org/10.5539/cis.v2n3p53.

Petriaggi, B. Davidde. & Ayala, G. G. (2015). Laser scanner reliefs of selected archeological structures in the submerged baiae. Isprs - International Archives Of The Photogrammetry, Remote Sensing And Spatial Information Sciences, 5(5), 79-83. http://dx.doi.org/10.5194/isprsarchives-xl-5-w5-79-2015.

Piazzetta, G. R., Trzaskos, B. & Machado, Álvaro M. L. (2017). Aplicação do laser scanner na análise de estabilidade em escavações subterrâneas: Mina Tabiporã, Campo Largo, PR. Geologia USP. Série Científica, 17(2), 59-70. https://doi.org/10.11606/issn.2316-9095.v17-266.

Piniotis, G., Soile, S., Bourexis, F., Tsakiri, M. & Ioannidis, C. (2020). Experimental assessment of 3d narrow space mapping technologies. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,149–156. https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-149-2020.

Pulcrano, M., Scandurra, S., Minin, G. & di Luggo, A. (2019). 3D cameras acquisitions for the documentation of cultural heritage. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 639–646. https://doi.org/10.5194/isprs-archives-XLII-2-W9-639-2019.

Rebelo, I. B. (1999). Realidade virtual aplicada à arquitetura e urbanismo: representação, simulação e avaliação de projetos. Dissertação de mestrado, Universidade Federal de Santa Catarina, SC, Brasil. https://repositorio.ufsc.br/handle/123456789/80518.

Reiss, M. L. L.(2007). Reconstrução tridimensional digital de objetos à curta distância por meio de luz estruturada. Tese de Doutorado, Universidade Estadual Paulista, Presidente Prudente, SP, Brasil. https://lume.ufrgs.br/handle/10183/10072.

Rocchini C., Cignoni P., Montani C., Pingi P. & Scopigno R. (2001). A low cost 3D scanner based on structured light. Computer Graphics Forum, 20(3). https://doi.org/10.1111/1467-8659.00522.

Rodrigues, R. L., & Agostinho, C. J. (2020). Documentação digital do patrimônio arquitetônico: a igreja Nossa Senhora Mãe dos Homens - Coqueiro Seco/AL. Gestão & Tecnologia De Projetos, 15(1), 26-41. https://doi.org/10.11606/gtp.v15i1.152125.

Santana, A. M. (2011). Localização e mapeamento simultâneos de ambientes planos usando visão monocular e representação híbrida do ambiente. Tese de Doutorado,Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil. https://repositorio.ufrn.br/handle/123456789/15150.

Simões, M. G., Farias, S. H. & Fontelles, R.G.S. (2009). Metodologia da pesquisa científica: Diretrizes para a elaboração de um protocolo de pesquisa. Revista Paraense de medicina. 23(3), 1-8. Disponível: http://www.files.bvs.br/uploads/s/0101-5907/2009/v23n3/a/967.pdf.

Simonelli, L., Amorim, A. L. de. & Groetelaars, N. J. (2020). Documentação da volumetria de edificações históricas através de nuvens de pontos: um experimento no Pelourinho, em Salvador na Bahia. Research, Society and Development, 9(2), e174922268. https://doi.org/10.33448/rsd-v9i2.2268.

Sulaiman, M. Z., Aziz, M. N. A., Bakar, M. H. A., Halili, N. A. & Azuddin, M. A. (2020). Matterport: virtual tour as a new marketing approach in real estate business during pandemic COVID-19. Atlantis Press. https://doi.org/10.2991/assehr.k.201202.079.

Shan, J. & Toth, C. (2008). Topographic laser ranging and scanning: principles and processing. https://doi.org/10.1201/9781420051438

Shults, R., Levin, E., Habibi, R., Shenoy, S., Honcheruk, O., Hart, T. & An, Z. (2019). Capability of matterport 3D camera for industrial archaeology sites inventory. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. https://doi.org/10.5194/isprs-archives-XLII-2-W11-1059-2019.

Taufer, L. & Ferreira, L. T. (2019, out-dez). Realidade Virtual no Turismo: Entretenimento ou uma mudança de paradigma? Rosa dos Ventos – Turismo e Hospitalidade, 11(4), 908-921. http://dx.doi.org/10.18226/21789061.v11i4p908.

Virtanen, J.-P., Kurkela, M., Turppa, T., Vaaja, M.T., Julin, A., Kukko, A., Hyyppa, J., Ahlavuo, M., von Numers, J.E., Haggren, H. & Hyyppa, H. (2018). Depth camera indoor mapping for 3D virtual radio play. The Photogrammetric Record 33(162), 171-195. https://doi.org/10.1111/phor.12239.

Wei, O., Chin, C., Majid, Z. & Setan, H. (2011). Documentation and preservation of historical monument using terrestrial laser scanning.

Wutke, J. D. (2006). Métodos para avaliação de um sistema laser scanner terrestre. Dissertação de Mestrado, Universidade Federal do Paraná, Curitiba, PR, Brasil. https://acervodigital.ufpr.br/handle/1884/5958.

Published

05/08/2021

How to Cite

OLIVEIRA, P. H. S. M.; ALBARICI, F. L. .; OLVIEIRA, H. C. de .; REBERTE, J. C. B. . Use of the SLAM technique associated with structured light mapping for registration and virtualization of historical heritage interiors. Research, Society and Development, [S. l.], v. 10, n. 10, p. e73101018624, 2021. DOI: 10.33448/rsd-v10i10.18624. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18624. Acesso em: 29 nov. 2021.

Issue

Section

Engineerings