Physical and flow properties of granular products for silo design




Corn; Wheat; Jenike shear tester; Flow Characteristics.


The knowledge of the physical and flow properties of the products to be stored are essential for determining the type of flow in silos, hoppers and conveyors, enabling proper handling and processing of the product, in such a way as to obtain an economical, safe and durable structure , assuming a high interest in Brazil due to the fact that the country does not have a standard for dimensioning and designing these structures. This work sought to overcome this limitation by determining the physical and flow properties of two nationally expressive agricultural products (corn and wheat grains) that could be included in a future Brazilian standard for actions and flow in silos. To obtain the data, a direct translational shear device (TGS 70-140) and two wall surfaces were used: smooth and rough steel, as these are the materials with the greatest possibility of use in the construction of silos. The flow properties (consolidated specific gravity, instantaneous internal friction angle, effective instantaneous internal friction angle, wall friction angle and cohesion) and the physical properties (granulometry and moisture content) of the products were determined. The experimental values ​​were compared with those prescribed by the foreign standards Eurocode 1 and ISO 11697. Based on the results obtained, it is verified that the properties of both products differ from the values ​​proposed by those standards, with some parameters being overestimated in relation to those obtained experimentally . The values ​​obtained can be used as parameters for the elaboration of a silo project, equipment prediction and processing of the type of flow for the national cultivars of corn and wheat, respecting the intrinsic specificities of the national cultivars.


Alonso-Miravalles, L., Zannini, E., Bez, J., Arendt, E. K. & O'Mahony, J. A. (2020). Physical and flow properties of pseudocereal-based protein-rich ingredient powders. Journal of Food Engineering, 281: 109973.

Ambrose, R. P. K., Jan, S. & Siliveru, K. (2016). A review on flow characterization methods for cereal grain-based powders. Journal of Food Measurement and Characterization, 96: 359-364.

Baroni, G. D., Benedeti, P. H. & Seidel, D. J. (2017). Cenários prospectivos da produção e armazenagem de grãos no Brasil. Revista Thema, 14(4): 55-64.

BMHB - British Materials Handling Board. Draft code of practice for the design of silos, bins, bunkers and hoppers. Berkshire: BMHB, 1985. 143p.

Calderón, C. A., Olivares, M. C. V., Uñac, R. O. & Vidales, A. M. (2017). Correlations between flow rate parameters and the shape of the grains in a silo discharge. Powder Technology, 320: 43-50.

Calil Júnior, C. (1984). Sobrepeciones em las paredes de los silos para almacenamiento de productos pulverulents cohesivos. Tese de Livre Docência, Escola de Engenharia de São Carlos, Universidade de São Paulo.

Calil Júnior, C. (1990). Recomendações de fluxo e de cargas para o projeto de silos verticais. Tese (Livre Docência) – Escola de Engenharia de São Carlos, Universidade de São Paulo.

Calil Júnior C, Cheung AB (2007) Silos: Pressões, fluxo, recomendações para o projeto e exemplos de cálculo. São Carlos: EESC. 232p.

Cheng, X. D., Lu, L. L. & Shi, C.X. (2012). The experimental research on friction properties of wheat. Journal of the Chinese Cereals and Oils Association, 27(4):15-19.

CONAB - Companhia Nacional de Abastecimento (2021). Acompanhamento safra brasileira de grãos, v.8– Safra 2020/21, n. 4 - Quarto levantamento, Brasília, p. 1-85, Janeiro 2021. ISSN 2318-7913.

Costa, C. A. da, Lopes Neto, J. P., Nascimento, J. W. B. do, Diniz, M. J. & Silva, V. R. da. (2014). Propriedades mecânicas e de fluxo de produtos agroindustriais. Revista Brasileira de Engenharia Agrícola e Ambiental, 18:774–780.

EN 1991-4: EUROCODE 1. Actions on structures - Part 4: Silos and tanks. European Committee for Normalisation. 108 p.

Fank, M. Z., Nascimento, J. W. B. do, Cardoso, D. L., Meira, A. S. & Willrich, F. L. (2018). Pressões verticais e força de fricção compressiva em um grande silo. Engenharia Agrícola, 38 (4): 498-503.

Fank, M. Z. (2017). Pressões em silos verticais cilíndricos metálicos: determinação experimental e cálculos teóricos por normas estrangeiras. Campina Grande: UFCG. 170p. Tese Doutorado.

Fank, Marivone Z., Nascimento, José W. B. do, Cardoso, Décio L., Meira, Ariadne S., & Willrich, Fábio L. (2018). Vertical pressures and compressive friction force in a large silo. Engenharia Agrícola, 38(4): 498-503.

Fonseca, J. J. S. Metodologia da pesquisa científica. Fortaleza: UEC, 2002. Apostila.

Fürll, C. & Hoffmann, T. (2015). Assessment of the flow properties of crushed grain products depending on the granulometric condition. Agricultural Engineering International: CIGR Journal, 17(4): 377–386.

García-Triñanes, P., Luding, S. & Shi, H. (2019). Tensile strength of cohesive powders. Advanced Powder Technology, 30(12): 2868-2880.

Gil, A. C. Como elaborar projetos de pesquisa. 4. ed. São Paulo: Atlas, 2007.

Gerhardt, T. E. & Silveira, D. T. Métodos de pesquisa. Porto Alegre: Editora da UFRGS, 2009.

Grudzień, K., Chaniecki, Z. & Babout, L. (2018). Study of granular flow in silo based on electrical capacitance tomography and optical imaging. Flow Measurement and Instrumentation, 62: 186-195.

Guo, Z., Shan, Z., Du, D., Zhao, M. & Zhang, M. (2018). Experimental investigation on the flow properties of sand granules in the process of sand mold printing. Rapid Prototyping Journal, 24(9): 1599-1608.

Horabik, J., Parafiniuk, P. & Molenda, M. (2016). Experiments and discrete element method simulations of distribution of static load of grain bedding at bottom of shallow model silo. Biosystems Engineering, 149: 60-71.

International Organization for Standart. ISO 11697. Bases for design of structures: Loads due to bulk materials. Switzerland: International Standard. London, 2012.

Jager, P. D., Bramante, T. & Luner, P. E. (2015). Assessment of pharmaceutical powder flowability using shear cell‐based methods and application of Jenike's methodology. Journal of Pharmaceutical Sciences, 104(11): 3804-3813.

Jin, Y., Lu HF, Guo, X. L. & Gong, X. (2018). The effect of water addition on the surface energy, bulk and flow properties of lignite. Fuel Processing Technology, 176: 91-100.

Lopes Neto, J. P. & Nascimento, J. W. B. do (2013). Características de fluxo e projeto de tremonhas cônicas em silos verticais. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(3): 339-345.

Lopes Neto, J. P., Nascimento, J. W. B. do & Fank, M. Z. (2014). Forças verticais e de atrito em silos cilíndricos com fundo plano. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(6):652–657.

Macri, D., Chirone, R., Salehi, H., Sofia, D., Materazzi, M., Barletta, D., Lettieri, P. & Poletto, M. (2020). Characterization of the bulk flow properties of industrial powders from shear tests. Processes, 8(5): 540.

Malagalage, A., Ratnayake, C., Saasen, A., Thomassen, T. & Von-Hafenbrädl, F. O. (2018). Flow properties of drill cuttings with varying drilling fluid content using jenike shear testing. Chemical Engineering & Technology, 41(8): 1544-1550.

Mallick, S. S., Rohilla, L., Garg, V. & Setia, G. (2018). Modeling flow properties of fine dry powders using particle morphological properties and its effects on geometry of fly ash evacuation hoppers. Particulate Science & Technology, 36(4): 464–472.

Meira, A. S., Mota, E. L., Bandeira, D. J. A., Silva, V. R. & Silva, L. A. (2019). Propriedades de fluxo e pressões para projeto de silo vertical armazenador de açúcares. Revista Engenharia na Agricultura – Reveng, 27(2): 104-110.

Mellmann, J., Hoffmann, T. & Fürll, C. (2013). Flow properties of crushed grains as a function of the particle shape. Powder Technology, 249:269-273.

Mitra, H., Pushpadass, H. A., Franklin, M. E.E., Ambrose, R. P.K., Ghoroi, C. & Battula, S. N. (2017). Influence of moisture content on the flow properties of basundi mix. Powder Technology, 312:133-143.

Moya, M., Aguado, P. J. & Ayuga, F. (2013). Mechanical properties of some granular agricultural materials used in silo design. Intitute of Agrophysics, 27:181-193.

Nascimento, J. W. B. do. (1996). Estudos de silos metálicos prismáticos para fábricas de ração. São Carlos: Tese Doutorado USP, 222p.

Palma, G. (2005). Pressões e fluxos em silos esbeltos (h/d ≥ l,5). Escola de Engenharia de São Carlos, Universidade de São Paulo. Dissertação de Mestrado.

Ramírez-Gómez, Á. (2016). Research needs on biomass characterization to prevent handling problems and hazards in industry. Particulate Science & Technology, 34(4): 432–441.

Ripp, M., Debele, Z. A. & Ripperger, S. (2015). Determination of Bulk Flow Property of tef Flour and Seed and Design of a Silo. Particulate Science & Technology, 33(5): 494–502.

Salehi, H., Barletta, D. & Poletto, M. (2017). A comparison between powder flow property testes. Particuology, 32:10-20.

Siliveru, K., Ambrose, R.P.K. & Vadlani, P.V. (2017). Significance of composition and particle size on the shear flow properties of wheat flour J. Sci. Food Agric., 97:2300-2306.

Souza, G. F. M. V., Miranda, R. F., Barrozo, M. A. S. (2015). Soybean (Glycine max L. Merrill) Seed Drying in Fixed Bed: Process Heterogeneity and Seed Quality.Drying Technology, 33(14): 1779-1787.

Stasiak, M., Molenda, M., Bańda, M. & Gondek, E. (2015). Mechanical properties of sawdust and woodchips. Fuel, 159: 900-908.



How to Cite

DORNELAS, K. C. .; SILVA, V. R. da .; PESSOA, Y. C. C. .; NASCIMENTO, J. W. B. do . Physical and flow properties of granular products for silo design. Research, Society and Development, [S. l.], v. 10, n. 10, p. e234101018754, 2021. DOI: 10.33448/rsd-v10i10.18754. Disponível em: Acesso em: 1 mar. 2024.



Agrarian and Biological Sciences