Organophosphorus and organochlorines: medical toxicology and environmental reflexes




Pesticides; Agrochemicals; Organochlorines; Organophosphorus; Toxicity; Diagnosis; Treatment; Environmental impact.


Pesticides or agrochemicals are chemical substances used in agriculture, because they have activity on countless living organisms that are harmful to crops. In this context, the organophosphorus and organochlorine compounds are of great relevance, due to the human intoxication of medical importance and environmental contamination. The objective of this work is to systematize information, contextualizing the problem in a critical way with emphasis on ecotoxicology and it’s medical consequences, associated with the use of organophosphorus and organochlorine compounds. To this end, a narrative literature review was conducted, outlined by searching for scientific articles and bibliographies about such compounds in the main international electronic repositories. The descriptors used for the search were: pesticides, agrochemicals, organochlorines, organophosphorus, toxicity, diagnosis, treatment, and environmental impact. Diagnosis is mostly clinical, but laboratory tests for evaluation/diagnosis can be performed, such as determination of erythrocyte cholinesterase (AChE) activity and plasma cholinesterase (BChE), for prognostic/monitoring purposes in chronic cases. Other tests may also be requested for analysis and investigation. The therapeutic protocol in cases of organophosphate intoxication consists of the administration of drugs with antagonistic activity to the substances, such as atropine and oximes, activated charcoal, anticonvulsant/neuroprotective drugs, and intensive care when necessary. However, there is no definitive treatment for organochlorine toxicity. Despite their high toxicity to the environment and to life forms, organophosphate compounds continue to be used for agricultural pest control, while organochlorines are used for vector control/disease dissemination. Moreover, such compounds are associated with occupational accidents and suicide.


Ahmed, G., Anawar, H. M., Takuwa, D. T., Chibua, I. T., Singh, G. S. & Sichilongo, K. (2015). Environmental assessment of fate, transport and persistent behavior of dichlorodiphenyltrichloroethanes and hexachlorocyclohexanes in land and water ecosystems. Int. J. Environ. Sci. Technol, 12, 2741-2756.

Andersson, H., Tago, D. & Treich, N. (2014). Pesticides and health: A review of evidence on health effects, valuation of risks, and benefit-cost analysis. In Preference Measurement in Health: Emerald Group Publishing Limited, 24, 203-295. Bingley. UK.

Andréa, M.M. (2004). Contaminação do solo por pesticidas. Centro de Proteção Ambiental do Instituto Biológico.

Bai, J., Lu, Q., Zhao, Q., Wang, J., Gao, Z. & Zhang, G. (2015). Organochlorine pesticides (OCPs) in wetland soils under different land uses along a 100-year chronosequence of reclamation in a Chinese estuary. Sci. Rep, 5:17624. doi: http//

Baptista, G. C. (1999). Desenvolvimento do uso de pesticidas! inseticidas. Manual de resíduos de pesticidas em alimentos. GARP-Associação Grupo de Analistas de Resíduos de Pesticidas.

Bester, S. M., Guelta, M. A., CHEUNG, J.,et al. (2018). Structural insights of stereospecific inhibition of human acetylcholinesterase by VX and subsequent reactivation by HI-6. Chemical Research in Toxicology, 31(12), 1405-1417.

Botelho, M. G. L., Pimentel, B. S., Furtado, L. G., Lima, M. C. S., et al. (2020). Agrotóxicos na agricultura: agentes de danos ambientais e a busca pela agricultura sustentável. Research, Society and Development, 9(8), e396985806. doi:

Bucaretchi, F. & Baracat, E. C. (2005). Exposições tóxicas agudas em crianças: um panorama. J Pediatria, 81(5), 212-222. Rio de Janeiro.

Caldas, L. Q. A. (2000). Intoxicações exógenas agudas por carbamatos, organofosforados, bipiridílicos e piretróides. Centro de Controle de Intoxicações de Niterói. Rio de Janeiro.

Cavalcanti, L., Aguiar, A., Lima, J. & Lima, A. (2018). Intoxicação por Organofosforados: Tratamento e Metodologias Analíticas Empregadas na Avaliação da Reativação e Inibição da Acetilcolinesterase. Rev.Virtual Qui, 8(3), 739-766.

Chen K. X., Zhou, X. H., Sun, C. A. & Yan, P. X. (2019). Manifestations of and risk factors for acute myocardial injury after acute organophosphorus pesticide poisoning. Medicine (Baltimore), 98(6), e14371. doi:

Curtil, C. & Masson, P. (1993). Aging of cholinesterase after inhibition by organophosphates. Annales Pharmaceutiques Françaises, 51(2), 63-77.

Dani, J. A. (2015). Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. International Review of Neurobiology, 124, 3-19. doi: 10.1016/bs.irn.2015.07.001.

Doctor, B. P. & Saxena, A. (2005). Bioscavengers for the protection of humans against organophosphate toxicity. Chemico-Biological Interactions, 157-158, 167-171.

Faria, N. M. X., Fassa, A. G. F. & Facchini, L. A. (2007). Intoxicação por agrotóxicos no Brasil: os sistemas oficiais de informação e desafios para realização de estudos epidemiológicos. Ciências e Saúde Coletiva, 12(1), 25-38.

Fenik, J., et al. (2011). Properties and determination of pesticides in fruits and vegetables. Trac Trends in Analytical Chemistry, 30(6). doi:

Fernandes, C. L. F., Ramires, P. F., Moura, R. R., Pohren, R. S., et al. (2020). Quais agrotóxicos estão contaminando os solos brasileiros? Research, Society and Developement, 9(3), e114932569. doi:

Ge, J., Woodward, L. A., Li, Q. X. & Wang, J. (2013). Composition, distribution and risk assessment of organochlorine pesticides in soils from the Midway Atoll. North Pacific Ocean. Sci. Total Environ, 452-453, 421-426. doi:

Giordano, G., Afsharinejad, Z., Guizzetti, M., Vitalone, A., Kavanagh T. J. & Costa, L. G. (2007). Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency. Toxicology and Applied Pharmacology, 219(2-3), 181-189. doi:

Gupta, R. C. (2006). Classification and uses of organophosphates and carbamates. Elsevier, 5-24. Amsterdam. Netherlands. doi:

Hatch, R. Venenos causadores de insuficiência respiratória. (1992). In: Booth, N. H. & McDonald, L. E. Farmacologia e terapêutica em veterinária. (6a ed). Rio de Janeiro. Guanabara-Koogan.

Hernández, A. F., Amparo, M. G., Pérez, V., García-Lario, J. V., Pena, G., Gil, F., et al. (2006). Influence of exposure to pesticides on serum components and enzyme activities of cytotoxicity among intensive agriculture farmers. Environ Res, 102(1), 70-76. doi:

Hulse, E. J., Haslam, J. D., Emmett, S. R. & Woolley, T. (2019). Organophosphorus nerve agent poisoning: managing the poisoned patient. British Journal of Anaesthesia, 123(4), 457-463. doi: http//

Jokanovic, M. (2001). Biotransformation of organophosphorus compounds. Toxicology, 166(3), 139-160.

Kovacic, P. (2003). Mechanism of organophosphates (nerve gases and pesticides) and antidotes: electron transfer and oxidative stress. Current Medicinal Chemistry, 10(4), 2705-2709.

Kruse, A. C., Kobilka, B. K., Gautam, D., Sexton, P. M., Christopoulos, A. & Wess, J. (2014). Muscarinic acetylcholine receptors: novel opportunities for drug development. Nature Reviews Drug Discovery, 13(7), 549-560.

Kumar, B.; Kumar, S.; Gaur, R.; Goel, G.; Mishra, M.; Singh, S.K.; Prakash, D.; Sharma, C.S. (2011). Persistent organochlorine pesticides and polychlorinated biphenyls in intensive agricultural soils from North India. Soil Water Res, 6(4), 190-197.

Kumar, S., Kaushik, G., Villarreal-Chiu, J. F. (2016). Scenario of organophosphate pollution and toxicity in India: a review. Environmental Science and Pollution Research, 23(10), 9480-9491.

Laudari, S., et al. (2014). Cardiovascular Effects of Acute Organophosphate Poisoning. Asia Pac J Med Toxicol, 3(2), 64-67.

Li, W., Yang, H., Gao, Q., Pan, H. & Yang, H. (2012). Residues of organochlorine pesticides in water and suspended particulate matter from Xiangshan Bay, East China Sea. Bull. Environ. Contam. Toxicol, 89, 811-815.

Lionetto, M. G., Caricato, R., Calisi, A., Giordano, M. E. & Schettino, T. (2013). Acetylcholinesterase as a biomarker in environmental and occupational medicine: new insights and future perspectives. BioMed Res International, 2013. doi:

Lotti, M. & Moretto, A. (2005). Organophosphate-induced delayed polyneuropathy. Toxicological Reviews, 24(1), 37-49.

Lushchekina, S.V., Schopfer, L.M. & Grigorenko, B. L. (2018). Optimization of cholinesterase-based catalytic bioscavengers against organophosphorus agents. Frontiers in Pharmacology, 9, 211.

Masson, P. & Lushchekina, S. V. (2016). Emergence of catalytic bioscavengers against organophosphorus agentes. ChemicoBiological Interactions, 259, 319-326.

Mew, E. J., Padmanathan, P., Konradsen, F., et al. (2017). A global burden of fatal self-poisoning with pesticides 2006–15: systematic review. Journal of Affective Disorders, 219, 93-104.

Mine, N., Taniguchi, W., Nishio, N., et al. (2015). Synaptic modulation of excitatory synaptic transmission by nicotinic acetylcholine receptors in spinal ventral horn neurons. Neuroscience, 290, 18-30. doi:

Mostafalou, S. & Abdollahi, M. (2017). Pesticides: an update of human exposure and toxicity. Arch. Toxicol, 91(2), 549-599. doi:

Nand, N., Aggarwal, K.., Bharti, K.. & Chakrabarti, D. (2007). Organophosphate induced delayed neuropathy JAPI, 55, 72-73.

Oga, S. (2003). Fundamentos de Toxicologia. (2a ed). Atheneu. São Paulo.

Pang, L., Liu, J., Li, W., Xia, Y. & Xing, J. (2019). Serum ubiquitin Cterminal hydrolase L1 predicts cognitive impairment in patients with acute organophosphorus pesticide poisoning. Journal of Clinical Laboratory Analysis, 33(7), e22947.

Pearson, M., Metcalfe, C., Jayamanne, S., Gunnell, D., Weerasinghe, M., Pieris, R., et al. (2017). Effectiveness of household lockable pesticide storage to reduce pesticide self-poisoning in rural Asia: a community-based, cluster-randomised controlled trial. Lancet (London, England), 390, 1863-1872.

Pereira A. S., et al. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM.

Picciotto, M. R., Higley, M. J. & Mineur, Y. S. (2012). Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron, 76(1), 116-129. doi:

Plaza, P. I., Martínez-Lopez, E. & Lambertucci, S. A. (2019). Perfect threat: pesticides and vultures. Science Of The Total Environment, 687, 1207–1218.

Quistad, G. B., Liang, S. N., Fisher, K. J., Nomura, D. K. & Casida, J. E. (2006). Each lipase has a unique sensitivity profile for organophosphorus inhibitors. Toxicological Sciences, 91(1), 166-172. doi:

Richards, P. G., Johnson, M. K. & Ray, D. E. (2000). Identification of acylpeptide hydrolase as a sensitive site for reaction with organophosphorus compounds and a potential target for cognitive enhancing drugs. Molecular Pharmacology, 58(3), 577-583. doi:

Rocha, L. C. S. & Spinosa, H. S. (1992). Praguicidas organofosforados e carbamatos: algumas considerações. Comunicações Científicas da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, 16.

Ródio, G. R., Rosset, I. G. & Brandalize, A. P. C. (2021). Exposição a agrotóxicos e suas consequências para a saúde humana. Research, Society and Developement, 10(8), e43010817526. doi:

Rosemberg, Y. J., Laube, B., Mao, L., et al. (2013). Pulmonary delivery of an aerosolized recombinant human butyrylcholinesterase pretreatment protects against aerosolized paraoxon in macaques. Chemico-Biological Interactions, 203(1), 167–171.

Rosemberg, Y. J., Adams, R. J., Hernández-Abanto, S., et al. (2015). Pharmacokinetics and immunogenicity of a recombinant human butyrylcholinesterase bioscavenger in macaques following intravenous and pulmonary delivery. ChemicoBiological Interactions, 242, 219-226.

Roberts, J. R. & Reigart, J. R. (2013). Recognition and Management of Nonrelaxing. (6a ed). United States. Environmental Protection Agency.

Sagiv, S. K., Bruno, J. L., Baker, J. M., Palzes, V., Kogut, K., Rauch, S., Gunier, R., et al. (2019). Prenatal exposure to organophosphate pesticides and functional neuroimaging in adolescents living in proximity to pesticide application. Proc. Natl. Acad. Sci, 116(37), 18347-18356. Uni States Am.

Santos, S. P. D. (2002). A Química dos Insecticidas (Parte I). Boletim da Sociedade Portuguesa de Química, 85.

Serrano-Medina, A., Ugalde-Lizárraga, A., Bojorquez-Cuevas, M., et al. (2019). Neuropsychiatric disorders in farmers associated with organophosphorus pesticide exposure in a rural village of northwest Mexico. International Journal of Environmental Research and Public Health, 16(5), 689.

Shadnia, S., Okazi, A., Akhlaghi, N., Sasanian, G. & Abdollahi, M. (2009). Prognostic value of long QT interval in acute and severe organophosphate poisoning. J Med Toxicol, 5(4), 196-199.

Solomon, C., Poole, J., Palmer, K. T., Peveler, R. & Coggon, D. (2007). Acute symptoms following work with pesticides. Occupational Medicine, 54(10), 665-670.

Srivastava, A. K., et al. (1995). Chronic effects of hexachlorociclohexane exposure: clinicai, hematologic and electrographic studies. Veterinary and Humall Toxicology, 37(4), 302-305.

Sun, H., Qi, Y., Zhang, D., Li, Q. X. & Wang, J. (2016). Concentrations, distribution, sources and risk assessment of organohalogenated contaminants in soils from Kenya, Eastern Africa. Environ. Pollut, 209, 177-185. doi:

Sun, I. O., Yoon, H.J. & Lee, K. Y. (2015). Prognostic Factors in Cholinesterase Inhibitor Poisoning. Med Sci Monit, 33(3), 534-539.

Teixeira, H., et al. (2004). Pesticide intoxications in the Centre of Portugal: Three years analysis. Forensic Science International, 143(2-3), 199-204. doi:

Villaça, Y. & Levin, E. (2018). Developmental neurotoxicity of succeeding generations of insecticides. Elsevier, 99, 55-77. doi:



How to Cite

SILVA, L. L. M. da; GARRIDO, R. G. Organophosphorus and organochlorines: medical toxicology and environmental reflexes. Research, Society and Development, [S. l.], v. 10, n. 10, p. e313101018853, 2021. DOI: 10.33448/rsd-v10i10.18853. Disponível em: Acesso em: 25 oct. 2021.



Review Article