Interactions of Schinus terebinthifolius (Anacardiaceae) essential oil against Aedes aegypti (Diptera: Culicidae) larvae

Authors

DOI:

https://doi.org/10.33448/rsd-v10i10.18892

Keywords:

Bioavailability; Vector control; Time of death.

Abstract

Essential oils arouse the interest of research for insect control. Schinus terebinthifolius is described in the literature for being bioactive against Aedes aegypti larvae. However, studies are scarce to fully assess the larvicidal potential of this species. This study aimed to evaluate the chemical composition, bioactivity, time of death and bioavailability of the essential oil from different parts of S. terebinthifolius obtained from the Brazilian cerrado on Ae. aegypti larvae. For this, plants grown in the city of Goiânia-GO were used and the elucidation of the chemical composition of essential oils was carried out by means of gas chromatography coupled with mass spectrometry. Ae. aegypti larvae were used in the bioassays to assess larvicidal activity, determine the time of death and bioavailability of the essential oil in solution. In addition, the interference of essential oil in the activity of the enzyme acetylcholinesterase was also investigated. Based on the results obtained, it was observed that the most promising essential oil for the development of larvicidal formulations is that of fruits, based on having higher yield, greater bioactivity, time of death similar to synthetic insecticides. An inhibitory interaction of acetylcholinesterase was also observed. However, the essential oil had low bioavailability, so it is necessary to develop formulations to increase its bioactivity period.

References

Aguiar, R. W. S., dos Santos, S. F., da Silva Morgado, F., Ascencio, S. D., de Mendonça Lopes, M., Viana, K. F., & Ribeiro, B. M. (2015). Insecticidal and repellent activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus. PloS one, 10(2), e0116765.

Ajaegbu, E. E., Danga, S. P. Y., Chijoke, I. U., & Okoye, F. B. C. (2016). Mosquito adulticidal activity of the leaf extracts of Spondias mombin L. against Aedes aegypti L. and isolation of active principles. Journal of vector borne diseases, 53(1), 17.

Amado, J. R. R., Prada, A. L., Diaz, J. G., Souto, R. N. P., Arranz, J. C. E., & de Souza, T. P. (2020). Development, larvicide activity, and toxicity in nontarget species of the Croton linearis Jacq essential oil nanoemulsion. Environmental Science and Pollution Research, 1-14.

Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils–a review. Food and chemical toxicology, 46(2), 446-475.

Bendaoud, H., Romdhane, M., Souchard, J. P., Cazaux, S., & Bouajila, J. (2010). Chemical composition and anticancer and antioxidant activities of Schinus molle L. and Schinus terebinthifolius Raddi berries essential oils. Journal of food Science, 75(6), C466-C472.

Bhavaniramya, S., Vishnupriya, S., Al-Aboody, M. S., Vijayakumar, R., & Baskaran, D. (2019). Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain & oil science and technology, 2(2), 49-55.

Bouabida, H., & Dris, D. (2020). Effect of rue (Ruta graveolens) essential oil on mortality, development, biochemical and biomarkers of Culiseta longiareolata. South African Journal of Botany, 133, 139-143.

Braga, I. A., & Valle, D. (2007). Aedes aegypti: inseticidas, mecanismos de ação e resistência.

Camaroti, J. R. S. L., de Almeida, W. A., do Rego Belmonte, B., de Oliveira, A. P. S., de Albuquerque Lima, T., Ferreira, M. R. A., & Napoleão, T. H. (2018). Sitophilus zeamais adults have survival and nutrition affected by Schinus terebinthifolius leaf extract and its lectin (SteLL). Industrial crops and products, 116, 81-89.

Cavalcanti, A. S., de Souza Alves, M., da Silva, L. C. P., dos Santos Patrocínio, D., Sanches, M. N., de Almeida Chaves, D. S., & de Souza, M. A. A. (2015). Volatiles composition and extraction kinetics from Schinus terebinthifolius and Schinus molle leaves and fruit. Revista Brasileira de Farmacognosia, 25(4), 356-362.

Dannenberg, G. S., Funck, G. D., da Silva, W. P., & Fiorentini, Â. M. (2019). Essential oil from pink pepper (Schinus terebinthifolius Raddi): Chemical composition, antibacterial activity and mechanism of action. Food control, 95, 115-120.

de Campos Bortolucci, W., de OLIVEIRA, H. L. M., Silva, E. S., Campo, C. F. D. A. A., Gonçalves, J. E., Junior, R. P., & Gazim, Z. C. (2019). Schinus terebinthifolius essential oil and fractions in the control of Aedes aegypti. Bioscience Journal, 35(5).

Deb, M., & Kumar, D. (2020). Bioactivity and efficacy of essential oils extracted from Artemisia annua against Tribolium casteneum (Herbst. 1797)(Coleoptera: Tenebrionidae): An eco-friendly approach. Ecotoxicology and environmental safety, 189, 109988.

Ennigrou, A., Casabianca, H., Vulliet, E., Hanchi, B., & Hosni, K. (2018). Assessing the fatty acid, essential oil composition, their radical scavenging and antibacterial activities of Schinus terebinthifolius Raddi leaves and twigs. Journal of food science and technology, 55(4), 1582-1590.

Famuyiwa, F. G., Adewoyin, F. B., Oladiran, O. J., & Obagbemi, O. R. (2020). Larvicidal Activity of Some Plants Extracts and Their Partitioned Fractions against Culex quinquefasciatus.

Fatimah, G., & Hasmiwati, R. R. (2020). Lethal concentration (LC50, 90, and 98) and lethal time (LT50, 90, and 98) at various temephos concentrations of Aedes aegypti L. larvae. International Journal of Mosquito Research, 7(1, Part A), 1-3.

Gobbo-Neto, L., & Lopes, N. P. (2007). Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Química nova, 30(2), 374-381.

Goudjil, M. B., Zighmi, S., Hamada, D., Mahcene, Z., Bencheikh, S. E., & Ladjel, S. (2020). Biological activities of essential oils extracted from Thymus capitatus (Lamiaceae). South African Journal of Botany, 128, 274-282.

He, F., Wang, W., Wu, M., Fang, Y., Wang, S., Yang, Y., & Xiang, F. (2020). Antioxidant and antibacterial activities of essential oil from Atractylodes lancea rhizomes. Industrial Crops and Products, 153, 112552.

Huang, H. T., Lin, C. C., Kuo, T. C., Chen, S. J., & Huang, R. N. (2019). Phytochemical composition and larvicidal activity of essential oils from herbal plants. Planta, 250(1), 59-68.

Hussein, H. S., Salem, M. Z., & Soliman, A. M. (2017). Repellent, attractive, and insecticidal effects of essential oils from Schinus terebinthifolius fruits and Corymbia citriodora leaves on two whitefly species, Bemisia tabaci, and Trialeurodes ricini. Scientia Horticulturae, 216, 111-119.

Kala, S., Sogan, N., Verma, P., Naik, S. N., Agarwal, A., Patanjali, P. K., & Kumar, J. (2019). Nanoemulsion of cashew nut shell liquid bio-waste: Mosquito larvicidal activity and insights on possible mode of action. South African Journal of Botany, 127, 293-300.

Kweka, E. J., Lima, T. C., Marciale, C. M., & de Sousa, D. P. (2016). Larvicidal efficacy of monoterpenes against the larvae of Anopheles gambiae. Asian Pacific Journal of Tropical Biomedicine, 6(4), 290-294.

Minho, A., Gaspar, E., & Domingues, R. (2017). Guia prático para determinação de curva dose-resposta e concentração letal em bioensaios com extratos vegetais. Embrapa Pecuária Sul-Comunicado Técnico (INFOTECA-E).

Mishra, A. P., Devkota, H. P., Nigam, M., Adetunji, C. O., Srivastava, N., Saklani, S., & Khaneghah, A. M. (2020). Combination of essential oils in dairy products: A review of their functions and potential benefits. Lwt, 133, 110116.

Nazni, W. A., Selvi, S., Lee, H. L., Sadiyah, I., Azahari, H., Derric, N., & Vasan, S. S. (2009). Susceptibility status of transgenic Aedes aegypti (L.) against insecticides.

Pell SK, Mitchell JD, Miller AJ & Lobova TA (2011) Anacardiaceae. The families and genera of vascular plants. Flowering plants. In: Kubitzki K (ed.) Eudicots. Sapindales, Curcubitales, Myrtales. Vol. X. Springer, Berlin. p. 7-50.

Procópio, T. F., Fernandes, K. M., Pontual, E. V., Ximenes, R. M., de Oliveira, A. R. C., de Santana Souza, C., & Napoleão, T. H. (2015). Schinus terebinthifolius leaf extract causes midgut damage, interfering with survival and development of Aedes aegypti larvae. PLoS One, 10(5), e0126612.

Schulte, H. L., Sousa, J. P. B., Sousa-Moura, D., Grisolia, C. K., & Espindola, L. S. (2021). Degradation evaluation and toxicity profile of bilobol, a promising eco-friendly larvicide. Chemosphere, 263, 128323.

Sharma, S., Loach, N., Gupta, S., & Mohan, L. (2020). Phyto-nanoemulsion: An emerging nano-insecticidal formulation. Environmental Nanotechnology, Monitoring & Management, 100331.

Silva, P. R. C., Camaroti, J. R. S. L., Almeida, W. A., Ferreira, E. C. B., Paiva, P. M. G., Barros, R., & Pontual, E. V. (2019). Schinus terebinthifolia leaf extract is a larvicidal, pupicidal, and oviposition deterring agent against Plutella xylostella. South African Journal of Botany, 127, 124-128.

Uliana, M. P., Fronza, M., da Silva, A. G., Vargas, T. S., de Andrade, T. U., & Scherer, R. (2016). Composition and biological activity of Brazilian rose pepper (Schinus terebinthifolius Raddi) leaves. Inustrial Crops and Products, 83, 235-240.

Vani, J. M., Monreal, M. T. F. D., Auharek, S. A., Cunha-Laura, A. L., de Arruda, E. J., Lima, A. R., & Oliveira, R. J. (2018). The mixture of cashew nut shell liquid and castor oil results in an efficient larvicide against Aedes aegypti that does not alter embryo-fetal development, reproductive performance or DNA integrity. Plos one, 13(3), e0193509.

Vicenço, C. B., Silvestre, W. P., Silva, V. T. D., Menegol, I. V., Hahn, R. C., Lima, T. S., & Pauletti, G. F. (2020). Bioactivity of Schinus molle L. and Schinus terebinthifolia Raddi. Essential Oils on Anticarsia gemmatalis (Hübner 1818). Brazilian Archives of Biology and Technology, 63.

Zahran, H. E. D. M., Abou-Taleb, H. K., & Abdelgaleil, S. A. (2017). Adulticidal, larvicidal and biochemical properties of essential oils against Culex pipiens L. Journal of Asia-Pacific Entomology, 20(1), 133-139.

Zeghib, F., Tine-Djebbar, F., Zeghib, A., Bachari, K., Sifi, K., & Soltani, N. (2020). Chemical Composition and Larvicidal Activity of Rosmarinus officinalis Essential Oil Against West Nile Vector Mosquito Culex pipiens (L.). Journal of Essential Oil Bearing Plants, 23(6), 1463-1474.

Downloads

Published

12/08/2021

How to Cite

PACHECO, F. M.; VIEIRA, T. E. S.; MORAIS, M. de S. M.; OLIVEIRA NETO, J. R. de; CUNHA, L. C. da; SANTOS, A. H. dos; ROMANO, C. A.; PAULA, J. R. de. Interactions of Schinus terebinthifolius (Anacardiaceae) essential oil against Aedes aegypti (Diptera: Culicidae) larvae. Research, Society and Development, [S. l.], v. 10, n. 10, p. e315101018892, 2021. DOI: 10.33448/rsd-v10i10.18892. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18892. Acesso em: 16 apr. 2024.

Issue

Section

Agrarian and Biological Sciences