Fatty acids profile and anticholinesterase activity of fish lipids from Brazilian Northeast

Authors

DOI:

https://doi.org/10.33448/rsd-v10i10.18968

Keywords:

Marine fish; Fatty acids composition; Polyunsaturated fatty acids; Acetylcholinesteras; Alzheimer's disease.

Abstract

Acetylcholine deficiency is a neurochemical characteristic of patients with clinical diagnosis of Alzheimer´s disease. Substances that inhibit the enzyme acetylcholinesterase, increasing levels of acetylcholine in the brain, are a promising form of treatment. Studies relate the use of omega-3 fatty acids in the treatment and prevention of Alzheimer's disease. The Northeast Region of Brazil has an enormous biological diversity and a wide variety of fish species. In this work, the oils of eleven species of marine fish found on the coast of Ceará, Brazil, were analyzed in relation to the fatty acid profile and the inhibitory activity of the enzyme acetylcholinesterase. Total lipids were extracted from fish samples by Folch metodology. The lipid extracts of the fish and industrialized fish oil, used for comparison, were esterified and fatty acid profiles were analyzed. The acetylcholinesterase inhibitory activity was measured quantitatively. The oils presented a high percentage of saturated fatty acids, which is a general characteristic of tropical fish. Oleic acid was the highest monounsaturated fatty acid. Oils of Scomberomorus cavalla, Lutjanus synagris and Haemulon plumieri presented expressive percentages of polyunsaturated fatty acids and the most potent anticholinesterase activities. This research showed the oils of S. cavalla, L. synagris and H. plumieri may be promising functional food products of active fatty acids as new therapies to treatment or prevention of Alzheimer's disease. The expressive concentration of unsaturated and polyunsaturated fatty acids together with their relevant anticholinesterase activity are characteristics of the importance of these fish oils.

References

Adams, R. P. (2001). Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Carol Stream, IL: Allured Publishing Corpoartion.

Almeida, E. S. & Silva, E. M. (2016). Chemometric identification and nutritional evaluation of three species of Lutjanidae (Perciformes) from the Amazonian Atlantic Coast based on fatty acid profiles. Acta Amazonica, 46 (4),401–410. https://dx.doi.org/10.1590/1809-4392201505254

Alzheimer’s Association. (2018). Alzheimer’s Disease Facts and Figures. Alzheimers Dement, 14(3), 367-429. https://www.alz.org/media/homeoffice/facts%20and%20figures/facts-and-figures.pdf

Andrade, G. Q., Bispo, E. S. & Druzian, J. I. (2009). Evaluation of nutritional quality in fish species most produced in the State of Bahia. Ciência e Tecnologia de Alimentos, 29(4), 721-26. https://doi: 10.1590/S0101-20612009000400004

Barberger-Gateau, P., Raffaitin, C., Letenneur, L., Berr, C., Tzourio, C., Dartigues, J. F. & Alperovitch, A. (2007). Dietary patterns and risk of dementia: The Three-Citycohort study. Neurology, 69, 1921–30. https://doi: 10.1212/01.wnl.0000278116.37320.52

Belkouch, M., Hachem, M., Elgot, A., Van, A. L., Picq, M., Guichardant, M., Lagarde, M., & Bernoud-Hubac, N. (2016). The pleiotropic effects of omega-3 docosahexaenoic acid on the hallmarks of Alzheimer's disease. The Journal of Nutritional Biochemistry, 38, 1–11. https://doi: 10.1016/j.jnutbio.2016.03.002

Bianco, E. M., Krug, J. L., Zimath, P. L., Kroger, A., Paganelli, C. J., Boeder, A. M., Santos, L., Tenfena, A., Ribeiro, S. M., Kuroshima, K. N., Alberton, M. D., Cordova, C. M. M. & Rebelo, R.A. (2015). Antimicrobial (including antimollicutes), antioxidant and anticholinesterase activities of Brazilian and Spanish marine organisms – evaluation of extracts and pure compounds. Revista Brasileira de Farmacognosia, 25, 668–76. https://doi.org/10.1016/j.bjp.2015.07.018

Calder, P. C. & Grimble, R. F. (2002). Polyunsaturated fatty acids, inflammation and immunity. European Journal Clinical Nutrition, 56, 3(Suppl), S14-S19. https://doi.org/10.1038/sj.ejcn.1601478

Calon, F., Lim, G. P., Yang, F., Morihara, T., Teter, B., Ubeda, O., Rostaing, P., Triller, A., Salem, N. Jr., Ashe, K.H., Frautschy, S.A. & Cole, G.M. (2004). Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model. Neuron, 43(5), 633-45. https://doi.org/10.1016/j.neuron.2004.08.013

Calviello, G., Serini, S. & Piccioni, E. (2008). Alzheimer’s Disease and n-3 Polyunsaturated Fatty Acids: Beneficial Effects and Possible Molecular Pathways Involved. Current Signal Transduction Therapy, 3(3),152-57. https://doi.10.2174/157436208785699659

Dey, I., Buda, C., Wiik, T., Halver, J. E. & Farkas, T. (1993). Molecular and structural composition of phospholipid membranes in livers of marine and freshwater fish in relation to temperature. Proceedings of the National Academy Sciences of the United States of America, 90 (16), 7498-7502. https://doi: 10.1073/pnas.90.16.7498

Ellman, G. L. K., Courtney, D., Valentino, A.J. & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7 (2), 88-95. http//doi.org/10.1016/0006-2952(61)90145-9

Elufioye, T. O., Obuotor, E. M., Sennuga, A. T., Agbedahunsi, J. M. & Adesanya, S.A. (2010). Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some selected Nigerian medicinal plants. Revista Brasileira de Farmaconosia, 20 (4),472–77. https://doi.org/10.1590/S0102-695X2010000400002

Fernandes, C. A., Vasconcelos, M. A. S., Ribeiro, M. A., Sarubbo, L. A., Andrade, S. A.C. & Melo Filho, A. B. (2014). Nutritional and lipid profiles in marine fish species from Brazil. Food Chemistry, 160, 67–71. http//doi: 10.1016/j.foodchem.2014.03.055

Fernández, I. M., Mozombite, D. M. S., Santos, R. C., Melo Filho, A. A., Ribeiro, P. R. E., Chagas, E. A., Takahashi, J. A., Ferraz, V. P., Melo, A. C. G. R. & Maldonado, S. A. S. (2016). Oil in Inajá Pulp (Maximiliana maripa): Fatty Acid Profile and Anti-acetylcholinesterase Activity. Orbital: The Electronic Journal of Chemistry, 8 (2). https://dx.doi.org/10.17807/orbital.v7i4.769

Fraga, V. G., Carvalho, M. G., Caramelli, P., Sousa, L.P. & Gomes, K.B. (2017) Resolution of inflammation, n−3 fatty acid supplementation and Alzheimer disease: A narrative review. Journal Neuroimmunology. 15(310), 111–19. http//doi: 10.1016/j.jneuroim.2017.07.005

Folch, J., Lees, M. & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226 (1), 497-509. https://doi.org/10.1016/s0021-9258(18)64849-5

Hooijmans, C. R., Jong, P. C. M. P., Vries, R. B. M. & Ritskes-Hoitinga, M. (2012) The Effects of Long-Term Omega-3 Fatty Acid Supplementation on Cognition and Alzheimer’s Pathology in Animal Models of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Journal of Alzheimer’s Disease. 28, 191–209. http//doi: 10.3233/JAD-2011-111217

Huang, L., Su, T. & Li. X. (2013). Natural products as sources of new lead compounds for the treatment of Alzheimer’s disease. Current Topics in Medicinal Chemistry, 13(15),1864–1878. https://doi 10.2174/15680266113139990142

Huang, T. L., Zandi, P. P., Tucker, K. L., Fitzpatrick, A. L., Kuller, L., Fried, L. P., Burke, G. L. & Carlson, M. C. (2005). Benefits of fatty fish on dementia riskare stronger for those without APOE epsilon4. Neurology, 65,1409–14. https:// doi 10.1212/01.wnl.0000183148.34197.2e

Internation Union of Pure and Applied Chemistry (1987). Standard methods for the analysis of oils, fats and derivatives (7th ed). Oxford, UK: Blackwell Scientific Publications.

Itriago, C. V., Melo Filho, A. A., Ribeiro, P. R. E., Melo, A. C. G. R., Takahashi, J. A., Ferraz, V. P., Mozombited, D. M. S. & Santos, R. C. (2017). Inhibition of acetylcholinesterase and Fatty Acid Composition in Theobroma grandiflorum Seeds. Orbital: The Electronic Journal of Chemistry, 9 (3). http://dx.doi.org/10.17807/orbital.v0i0.894

James, M. J., Gibson, R. A. & Cleland, L. G. (2000) Dietary polyunsaturated fatty acids and inflammatory mediator production. American Journal of Clinical Nutrition, 71, 1(Suppl), 343S-348S. http://doi: 10.1093/ajcn/71.1.343s

Kerdiles, O., Lay, S. & Calon, F. (2017). Omega-3 polyunsaturated fatty acids and brain health: Preclinical evidence for the prevention of neurodegenerative diseases. Trends in Food Science and Technology, 69, 203-213. https://doi.org/10.1016/j.tifs.2017.09.003

Menezes, M. E. S., Lira, G. M. O., Mena, C. M. B. & Sant’ana, A. E. G. (2009). Nutritional value of fish off the coast of Alagoas, Brazil. Revista Instituto Adolfo Lutz, 68 (1), 21-28. http://periodicos.ses.sp.bvs.br/scielo.php?script=sci_abstract&pid=S0073-98552009000100003&lng=pt&nrm=iso&tlng=pt

Mesquita, T. R., Souza, A. A., Constantino, E., Pelógia, N. C. C., Posso, I. P. & Pires O. C. (2011). Anti-inflammatory effect of dietary supplementation with omega-3 fatty acids in rats. Revista Dor, 12 (4), 337-341. https://dx.doi.org/10.1590/S1806-00132011000400010

Morais, S.M., Silva, K.A., Araujo, H., Vieira, I.G.P., Alves, D.R., Fontenelle, R.O.S. & Silva, A.M.S. (2017). Anacardic Acid Constituents from Cashew Nut Shell Liquid: NMR Characterization and the Effect of Unsaturation on Its Biological Activities. Pharmaceuticals, 10 (31). http//doi:10.3390/ph10010031

Ozogul, Y. & Ozogul, F. (2007). Fatty acid profiles of commercially important fish species from the Mediterranean, Aegean and Black Seas. Food Chemistry, 100 (4), 1634–1638. https//doi: 10.1016/j.foodchem.2005.11.047

Ozogul, Y., Ozogul, F. & Alagoz S. (2007). Fatty acids profiles and fat contents of commercially important seawater and freshwater fish species of Turkey: A comparative study. Food Chemistry, 103, 217–223. http// doi:10.1016/j.foodchem.2006.08.009

Penfield, M. P. & Campbell, A. M. (1990). Experimental Food Science. (3th ed.) San Diego: Academic Press.

Penido, A. B., Morais, S. M., Ribeiro, A. B., Alves, D. R., Rodrigues, A. L. M., Santos, L. H. & Menezes, J. E. S. A. (2017). Medicinal Plants from Northeastern Brazil against Alzheimer’s Disease. Evidence-Based Complementary and Alternative Medicine, 1753673. https://doi.org/10.1155/2017/1753673

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. UAB/ NTE/ UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Prato, E. & Biandolino, F. (2012). Total lipid content and fatty acid composition of commercially important fish species from the Mediterranean, Mar Grande Sea. Food Chemistry, 131 (4),1233–1239. https://doi.org/10.1016/j.foodchem.2014.03055.

Rhee, I. K., Meent, M. V. D., Ingkaninan, K. & Verpoorte, R. (2001). Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. Journal of Chromatografy, 915 (1-2), 217-23. https://doi:10.1016/s0021-9673(01)00624-0

Santos, R. C., Melo Filho, A. A., Chagas, E. A., Takahashi, J. A., Ferraz, V. P., Costa, A. K. P., Melo, A. C. G. R., Montero, I. F. & Ribeiro P. R. E. (2015). Fatty acid profile and bioactivity from Annona hypoglauca seeds oil. African Journal of Biotechnology, 14 (30). https://dx.doi.org/10.5897/AJB2015.14714

Santos, T. C., Gomes, T. M., Pinto, B. A. S., Camara, A. L.& Paes, A. M. A. (2018). Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer's Disease Therapy. Frontiers in Pharmacology, 18 (9), 1192. https://dx.doi: 10.3389/fphar.2018.01192

Song, C., Shieh, C., Wu, Y., Kalueff, A., Gaikwad, S. & Su, K. (2016). The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer's disease: Acting separately or synergistically? Progress in Lipid Research, 62,41–54. https://doi: 10.1016/j.plipres.2015.12.003

Trevisan, M. T. S., Macedo, F. V. V., Van Den Meent, M., Rhee, I. K. & Verpoorte, R.. (2003) Seleção de plantas com atividade anticolinesterase para tratamento da doença de Alzheimer. Química Nova, 26 (3), 301-4. https://dx.doi.org/10.1590/S0100-40422003000300002

Vedin, I., Cederholm, T., Freund-Levi, Y., Basun, H., Garlind, A., Irving, G. F., Eriksdotter-Jönhagen, M., Wahlund, L. O., Dahlman, I. & Palmblad, J. (2012). Effects of DHA-rich n-3 fatty acid supplementation on gene expression in blood mononuclear leukocytes: the omegad study. Plos One. 7(4), e35425. http://doi: 10.1371/journal.pone.0035425

Vinutha, B., Prashanth, D., Salma, K., Sreeja, S. L., Pratiti, D., Padmaja, R., Radhika, S., Amit, A., Venkateshwarlu, K. & Deepak, M. (2007). Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. Journal of Ethnopharmacology, 109 (2), 359-363. https://doi:10.1016/j.jep.2006.06.014

Wu, S., Ding, Y., Wu, F., Li, R., Hou, J. & Mao, P. (2015) Omega-3 fatty acids intake and risks of dementia and Alzheimer’s disease: A meta-analysis. Neuroscience & Biobehavioral Reviews, 48, 1–9. https//: doi 10.1016/j.neubiorev.2014.11.008

Downloads

Published

15/08/2021

How to Cite

MOURA, S. M. A.; MORAIS, S. M. de; CARIOCA, J. O. B.; RODRIGUES, A. L. M.; ALVES, D. R.; SILVA , F. F. M. da; SILVA, A. C. S. e; AMARAL , S. M. B.; SILVA, Y. Y. V. Fatty acids profile and anticholinesterase activity of fish lipids from Brazilian Northeast . Research, Society and Development, [S. l.], v. 10, n. 10, p. e450101018968, 2021. DOI: 10.33448/rsd-v10i10.18968. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18968. Acesso em: 18 oct. 2021.

Issue

Section

Agrarian and Biological Sciences