Perfil de ácidos graxos e atividade anticolinesterásica de lipídios de peixes do Nordeste do Brasil

Autores

DOI:

https://doi.org/10.33448/rsd-v10i10.18968

Palavras-chave:

Peixes marinhos; Composição de ácidos graxos; Ácidos graxos poli-insaturados; Acetilcolinesterase; Doença de Alzheimer.

Resumo

A deficiência da acetilcolina é uma característica neuroquímica de pacientes com diagnóstico clínico da doença de Alzheimer. As substâncias que inibem a enzima acetilcolinesterase, aumentando os níveis de acetilcolina no cérebro, são uma forma promissora de tratamento. Estudos relacionam o uso de ácidos graxos ômega-3 no tratamento e prevenção da doença. Neste trabalho, os óleos de onze espécies de peixes marinhos encontrados no litoral do Ceará, Brasil, foram analisados em relação ao perfil de ácidos graxos e à atividade inibitória da enzima acetilcolinesterase. Os lipídios totais foram extraídos das amostras de peixes pela metodologia de Folch. Os extratos lipídicos dos peixes e o óleo de peixe industrializado, usado para comparação, foram esterificados e os perfis de ácidos graxos analisados. A atividade inibitória da acetilcolinesterase foi medida quantitativamente. Os óleos apresentaram elevados percentuais de ácidos graxos saturados, característica dos peixes de águas tropicais. O ácido oléico representou o ácido graxo monoinsaturado em maior proporção. Os óleos de Scomberomorus cavalla, Lutjanus synagris e Haemulon plumieri apresentaram percentuais expressivos de ácidos graxos poli-insaturados, assim como as mais potentes atividades anticolinesterásicas. Dessa forma, a pesquisa demonstrou a importância dos óleos de S. cavalla, L. synagris e H. plumieri, como alimentos funcionais ricos em ácidos graxos ativos, e que podem ser utilizados em novas terapias para o tratamento ou prevenção da doença de Alzheimer.

Referências

Adams, R. P. (2001). Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Carol Stream, IL: Allured Publishing Corpoartion.

Almeida, E. S. & Silva, E. M. (2016). Chemometric identification and nutritional evaluation of three species of Lutjanidae (Perciformes) from the Amazonian Atlantic Coast based on fatty acid profiles. Acta Amazonica, 46 (4),401–410. https://dx.doi.org/10.1590/1809-4392201505254

Alzheimer’s Association. (2018). Alzheimer’s Disease Facts and Figures. Alzheimers Dement, 14(3), 367-429. https://www.alz.org/media/homeoffice/facts%20and%20figures/facts-and-figures.pdf

Andrade, G. Q., Bispo, E. S. & Druzian, J. I. (2009). Evaluation of nutritional quality in fish species most produced in the State of Bahia. Ciência e Tecnologia de Alimentos, 29(4), 721-26. https://doi: 10.1590/S0101-20612009000400004

Barberger-Gateau, P., Raffaitin, C., Letenneur, L., Berr, C., Tzourio, C., Dartigues, J. F. & Alperovitch, A. (2007). Dietary patterns and risk of dementia: The Three-Citycohort study. Neurology, 69, 1921–30. https://doi: 10.1212/01.wnl.0000278116.37320.52

Belkouch, M., Hachem, M., Elgot, A., Van, A. L., Picq, M., Guichardant, M., Lagarde, M., & Bernoud-Hubac, N. (2016). The pleiotropic effects of omega-3 docosahexaenoic acid on the hallmarks of Alzheimer's disease. The Journal of Nutritional Biochemistry, 38, 1–11. https://doi: 10.1016/j.jnutbio.2016.03.002

Bianco, E. M., Krug, J. L., Zimath, P. L., Kroger, A., Paganelli, C. J., Boeder, A. M., Santos, L., Tenfena, A., Ribeiro, S. M., Kuroshima, K. N., Alberton, M. D., Cordova, C. M. M. & Rebelo, R.A. (2015). Antimicrobial (including antimollicutes), antioxidant and anticholinesterase activities of Brazilian and Spanish marine organisms – evaluation of extracts and pure compounds. Revista Brasileira de Farmacognosia, 25, 668–76. https://doi.org/10.1016/j.bjp.2015.07.018

Calder, P. C. & Grimble, R. F. (2002). Polyunsaturated fatty acids, inflammation and immunity. European Journal Clinical Nutrition, 56, 3(Suppl), S14-S19. https://doi.org/10.1038/sj.ejcn.1601478

Calon, F., Lim, G. P., Yang, F., Morihara, T., Teter, B., Ubeda, O., Rostaing, P., Triller, A., Salem, N. Jr., Ashe, K.H., Frautschy, S.A. & Cole, G.M. (2004). Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model. Neuron, 43(5), 633-45. https://doi.org/10.1016/j.neuron.2004.08.013

Calviello, G., Serini, S. & Piccioni, E. (2008). Alzheimer’s Disease and n-3 Polyunsaturated Fatty Acids: Beneficial Effects and Possible Molecular Pathways Involved. Current Signal Transduction Therapy, 3(3),152-57. https://doi.10.2174/157436208785699659

Dey, I., Buda, C., Wiik, T., Halver, J. E. & Farkas, T. (1993). Molecular and structural composition of phospholipid membranes in livers of marine and freshwater fish in relation to temperature. Proceedings of the National Academy Sciences of the United States of America, 90 (16), 7498-7502. https://doi: 10.1073/pnas.90.16.7498

Ellman, G. L. K., Courtney, D., Valentino, A.J. & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7 (2), 88-95. http//doi.org/10.1016/0006-2952(61)90145-9

Elufioye, T. O., Obuotor, E. M., Sennuga, A. T., Agbedahunsi, J. M. & Adesanya, S.A. (2010). Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some selected Nigerian medicinal plants. Revista Brasileira de Farmaconosia, 20 (4),472–77. https://doi.org/10.1590/S0102-695X2010000400002

Fernandes, C. A., Vasconcelos, M. A. S., Ribeiro, M. A., Sarubbo, L. A., Andrade, S. A.C. & Melo Filho, A. B. (2014). Nutritional and lipid profiles in marine fish species from Brazil. Food Chemistry, 160, 67–71. http//doi: 10.1016/j.foodchem.2014.03.055

Fernández, I. M., Mozombite, D. M. S., Santos, R. C., Melo Filho, A. A., Ribeiro, P. R. E., Chagas, E. A., Takahashi, J. A., Ferraz, V. P., Melo, A. C. G. R. & Maldonado, S. A. S. (2016). Oil in Inajá Pulp (Maximiliana maripa): Fatty Acid Profile and Anti-acetylcholinesterase Activity. Orbital: The Electronic Journal of Chemistry, 8 (2). https://dx.doi.org/10.17807/orbital.v7i4.769

Fraga, V. G., Carvalho, M. G., Caramelli, P., Sousa, L.P. & Gomes, K.B. (2017) Resolution of inflammation, n−3 fatty acid supplementation and Alzheimer disease: A narrative review. Journal Neuroimmunology. 15(310), 111–19. http//doi: 10.1016/j.jneuroim.2017.07.005

Folch, J., Lees, M. & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226 (1), 497-509. https://doi.org/10.1016/s0021-9258(18)64849-5

Hooijmans, C. R., Jong, P. C. M. P., Vries, R. B. M. & Ritskes-Hoitinga, M. (2012) The Effects of Long-Term Omega-3 Fatty Acid Supplementation on Cognition and Alzheimer’s Pathology in Animal Models of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Journal of Alzheimer’s Disease. 28, 191–209. http//doi: 10.3233/JAD-2011-111217

Huang, L., Su, T. & Li. X. (2013). Natural products as sources of new lead compounds for the treatment of Alzheimer’s disease. Current Topics in Medicinal Chemistry, 13(15),1864–1878. https://doi 10.2174/15680266113139990142

Huang, T. L., Zandi, P. P., Tucker, K. L., Fitzpatrick, A. L., Kuller, L., Fried, L. P., Burke, G. L. & Carlson, M. C. (2005). Benefits of fatty fish on dementia riskare stronger for those without APOE epsilon4. Neurology, 65,1409–14. https:// doi 10.1212/01.wnl.0000183148.34197.2e

Internation Union of Pure and Applied Chemistry (1987). Standard methods for the analysis of oils, fats and derivatives (7th ed). Oxford, UK: Blackwell Scientific Publications.

Itriago, C. V., Melo Filho, A. A., Ribeiro, P. R. E., Melo, A. C. G. R., Takahashi, J. A., Ferraz, V. P., Mozombited, D. M. S. & Santos, R. C. (2017). Inhibition of acetylcholinesterase and Fatty Acid Composition in Theobroma grandiflorum Seeds. Orbital: The Electronic Journal of Chemistry, 9 (3). http://dx.doi.org/10.17807/orbital.v0i0.894

James, M. J., Gibson, R. A. & Cleland, L. G. (2000) Dietary polyunsaturated fatty acids and inflammatory mediator production. American Journal of Clinical Nutrition, 71, 1(Suppl), 343S-348S. http://doi: 10.1093/ajcn/71.1.343s

Kerdiles, O., Lay, S. & Calon, F. (2017). Omega-3 polyunsaturated fatty acids and brain health: Preclinical evidence for the prevention of neurodegenerative diseases. Trends in Food Science and Technology, 69, 203-213. https://doi.org/10.1016/j.tifs.2017.09.003

Menezes, M. E. S., Lira, G. M. O., Mena, C. M. B. & Sant’ana, A. E. G. (2009). Nutritional value of fish off the coast of Alagoas, Brazil. Revista Instituto Adolfo Lutz, 68 (1), 21-28. http://periodicos.ses.sp.bvs.br/scielo.php?script=sci_abstract&pid=S0073-98552009000100003&lng=pt&nrm=iso&tlng=pt

Mesquita, T. R., Souza, A. A., Constantino, E., Pelógia, N. C. C., Posso, I. P. & Pires O. C. (2011). Anti-inflammatory effect of dietary supplementation with omega-3 fatty acids in rats. Revista Dor, 12 (4), 337-341. https://dx.doi.org/10.1590/S1806-00132011000400010

Morais, S.M., Silva, K.A., Araujo, H., Vieira, I.G.P., Alves, D.R., Fontenelle, R.O.S. & Silva, A.M.S. (2017). Anacardic Acid Constituents from Cashew Nut Shell Liquid: NMR Characterization and the Effect of Unsaturation on Its Biological Activities. Pharmaceuticals, 10 (31). http//doi:10.3390/ph10010031

Ozogul, Y. & Ozogul, F. (2007). Fatty acid profiles of commercially important fish species from the Mediterranean, Aegean and Black Seas. Food Chemistry, 100 (4), 1634–1638. https//doi: 10.1016/j.foodchem.2005.11.047

Ozogul, Y., Ozogul, F. & Alagoz S. (2007). Fatty acids profiles and fat contents of commercially important seawater and freshwater fish species of Turkey: A comparative study. Food Chemistry, 103, 217–223. http// doi:10.1016/j.foodchem.2006.08.009

Penfield, M. P. & Campbell, A. M. (1990). Experimental Food Science. (3th ed.) San Diego: Academic Press.

Penido, A. B., Morais, S. M., Ribeiro, A. B., Alves, D. R., Rodrigues, A. L. M., Santos, L. H. & Menezes, J. E. S. A. (2017). Medicinal Plants from Northeastern Brazil against Alzheimer’s Disease. Evidence-Based Complementary and Alternative Medicine, 1753673. https://doi.org/10.1155/2017/1753673

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. UAB/ NTE/ UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Prato, E. & Biandolino, F. (2012). Total lipid content and fatty acid composition of commercially important fish species from the Mediterranean, Mar Grande Sea. Food Chemistry, 131 (4),1233–1239. https://doi.org/10.1016/j.foodchem.2014.03055.

Rhee, I. K., Meent, M. V. D., Ingkaninan, K. & Verpoorte, R. (2001). Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. Journal of Chromatografy, 915 (1-2), 217-23. https://doi:10.1016/s0021-9673(01)00624-0

Santos, R. C., Melo Filho, A. A., Chagas, E. A., Takahashi, J. A., Ferraz, V. P., Costa, A. K. P., Melo, A. C. G. R., Montero, I. F. & Ribeiro P. R. E. (2015). Fatty acid profile and bioactivity from Annona hypoglauca seeds oil. African Journal of Biotechnology, 14 (30). https://dx.doi.org/10.5897/AJB2015.14714

Santos, T. C., Gomes, T. M., Pinto, B. A. S., Camara, A. L.& Paes, A. M. A. (2018). Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer's Disease Therapy. Frontiers in Pharmacology, 18 (9), 1192. https://dx.doi: 10.3389/fphar.2018.01192

Song, C., Shieh, C., Wu, Y., Kalueff, A., Gaikwad, S. & Su, K. (2016). The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer's disease: Acting separately or synergistically? Progress in Lipid Research, 62,41–54. https://doi: 10.1016/j.plipres.2015.12.003

Trevisan, M. T. S., Macedo, F. V. V., Van Den Meent, M., Rhee, I. K. & Verpoorte, R.. (2003) Seleção de plantas com atividade anticolinesterase para tratamento da doença de Alzheimer. Química Nova, 26 (3), 301-4. https://dx.doi.org/10.1590/S0100-40422003000300002

Vedin, I., Cederholm, T., Freund-Levi, Y., Basun, H., Garlind, A., Irving, G. F., Eriksdotter-Jönhagen, M., Wahlund, L. O., Dahlman, I. & Palmblad, J. (2012). Effects of DHA-rich n-3 fatty acid supplementation on gene expression in blood mononuclear leukocytes: the omegad study. Plos One. 7(4), e35425. http://doi: 10.1371/journal.pone.0035425

Vinutha, B., Prashanth, D., Salma, K., Sreeja, S. L., Pratiti, D., Padmaja, R., Radhika, S., Amit, A., Venkateshwarlu, K. & Deepak, M. (2007). Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. Journal of Ethnopharmacology, 109 (2), 359-363. https://doi:10.1016/j.jep.2006.06.014

Wu, S., Ding, Y., Wu, F., Li, R., Hou, J. & Mao, P. (2015) Omega-3 fatty acids intake and risks of dementia and Alzheimer’s disease: A meta-analysis. Neuroscience & Biobehavioral Reviews, 48, 1–9. https//: doi 10.1016/j.neubiorev.2014.11.008

Downloads

Publicado

15/08/2021

Como Citar

MOURA, S. M. A.; MORAIS, S. M. de; CARIOCA, J. O. B.; RODRIGUES, A. L. M.; ALVES, D. R.; SILVA , F. F. M. da; SILVA, A. C. S. e; AMARAL , S. M. B.; SILVA, Y. Y. V. Perfil de ácidos graxos e atividade anticolinesterásica de lipídios de peixes do Nordeste do Brasil. Research, Society and Development, [S. l.], v. 10, n. 10, p. e450101018968, 2021. DOI: 10.33448/rsd-v10i10.18968. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18968. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências Agrárias e Biológicas