Perfil de ácidos graxos e atividade anticolinesterásica de lipídios de peixes do Nordeste do Brasil
DOI:
https://doi.org/10.33448/rsd-v10i10.18968Palavras-chave:
Peixes marinhos; Composição de ácidos graxos; Ácidos graxos poli-insaturados; Acetilcolinesterase; Doença de Alzheimer.Resumo
A deficiência da acetilcolina é uma característica neuroquímica de pacientes com diagnóstico clínico da doença de Alzheimer. As substâncias que inibem a enzima acetilcolinesterase, aumentando os níveis de acetilcolina no cérebro, são uma forma promissora de tratamento. Estudos relacionam o uso de ácidos graxos ômega-3 no tratamento e prevenção da doença. Neste trabalho, os óleos de onze espécies de peixes marinhos encontrados no litoral do Ceará, Brasil, foram analisados em relação ao perfil de ácidos graxos e à atividade inibitória da enzima acetilcolinesterase. Os lipídios totais foram extraídos das amostras de peixes pela metodologia de Folch. Os extratos lipídicos dos peixes e o óleo de peixe industrializado, usado para comparação, foram esterificados e os perfis de ácidos graxos analisados. A atividade inibitória da acetilcolinesterase foi medida quantitativamente. Os óleos apresentaram elevados percentuais de ácidos graxos saturados, característica dos peixes de águas tropicais. O ácido oléico representou o ácido graxo monoinsaturado em maior proporção. Os óleos de Scomberomorus cavalla, Lutjanus synagris e Haemulon plumieri apresentaram percentuais expressivos de ácidos graxos poli-insaturados, assim como as mais potentes atividades anticolinesterásicas. Dessa forma, a pesquisa demonstrou a importância dos óleos de S. cavalla, L. synagris e H. plumieri, como alimentos funcionais ricos em ácidos graxos ativos, e que podem ser utilizados em novas terapias para o tratamento ou prevenção da doença de Alzheimer.
Referências
Adams, R. P. (2001). Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Carol Stream, IL: Allured Publishing Corpoartion.
Almeida, E. S. & Silva, E. M. (2016). Chemometric identification and nutritional evaluation of three species of Lutjanidae (Perciformes) from the Amazonian Atlantic Coast based on fatty acid profiles. Acta Amazonica, 46 (4),401–410. https://dx.doi.org/10.1590/1809-4392201505254
Alzheimer’s Association. (2018). Alzheimer’s Disease Facts and Figures. Alzheimers Dement, 14(3), 367-429. https://www.alz.org/media/homeoffice/facts%20and%20figures/facts-and-figures.pdf
Andrade, G. Q., Bispo, E. S. & Druzian, J. I. (2009). Evaluation of nutritional quality in fish species most produced in the State of Bahia. Ciência e Tecnologia de Alimentos, 29(4), 721-26. https://doi: 10.1590/S0101-20612009000400004
Barberger-Gateau, P., Raffaitin, C., Letenneur, L., Berr, C., Tzourio, C., Dartigues, J. F. & Alperovitch, A. (2007). Dietary patterns and risk of dementia: The Three-Citycohort study. Neurology, 69, 1921–30. https://doi: 10.1212/01.wnl.0000278116.37320.52
Belkouch, M., Hachem, M., Elgot, A., Van, A. L., Picq, M., Guichardant, M., Lagarde, M., & Bernoud-Hubac, N. (2016). The pleiotropic effects of omega-3 docosahexaenoic acid on the hallmarks of Alzheimer's disease. The Journal of Nutritional Biochemistry, 38, 1–11. https://doi: 10.1016/j.jnutbio.2016.03.002
Bianco, E. M., Krug, J. L., Zimath, P. L., Kroger, A., Paganelli, C. J., Boeder, A. M., Santos, L., Tenfena, A., Ribeiro, S. M., Kuroshima, K. N., Alberton, M. D., Cordova, C. M. M. & Rebelo, R.A. (2015). Antimicrobial (including antimollicutes), antioxidant and anticholinesterase activities of Brazilian and Spanish marine organisms – evaluation of extracts and pure compounds. Revista Brasileira de Farmacognosia, 25, 668–76. https://doi.org/10.1016/j.bjp.2015.07.018
Calder, P. C. & Grimble, R. F. (2002). Polyunsaturated fatty acids, inflammation and immunity. European Journal Clinical Nutrition, 56, 3(Suppl), S14-S19. https://doi.org/10.1038/sj.ejcn.1601478
Calon, F., Lim, G. P., Yang, F., Morihara, T., Teter, B., Ubeda, O., Rostaing, P., Triller, A., Salem, N. Jr., Ashe, K.H., Frautschy, S.A. & Cole, G.M. (2004). Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model. Neuron, 43(5), 633-45. https://doi.org/10.1016/j.neuron.2004.08.013
Calviello, G., Serini, S. & Piccioni, E. (2008). Alzheimer’s Disease and n-3 Polyunsaturated Fatty Acids: Beneficial Effects and Possible Molecular Pathways Involved. Current Signal Transduction Therapy, 3(3),152-57. https://doi.10.2174/157436208785699659
Dey, I., Buda, C., Wiik, T., Halver, J. E. & Farkas, T. (1993). Molecular and structural composition of phospholipid membranes in livers of marine and freshwater fish in relation to temperature. Proceedings of the National Academy Sciences of the United States of America, 90 (16), 7498-7502. https://doi: 10.1073/pnas.90.16.7498
Ellman, G. L. K., Courtney, D., Valentino, A.J. & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7 (2), 88-95. http//doi.org/10.1016/0006-2952(61)90145-9
Elufioye, T. O., Obuotor, E. M., Sennuga, A. T., Agbedahunsi, J. M. & Adesanya, S.A. (2010). Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some selected Nigerian medicinal plants. Revista Brasileira de Farmaconosia, 20 (4),472–77. https://doi.org/10.1590/S0102-695X2010000400002
Fernandes, C. A., Vasconcelos, M. A. S., Ribeiro, M. A., Sarubbo, L. A., Andrade, S. A.C. & Melo Filho, A. B. (2014). Nutritional and lipid profiles in marine fish species from Brazil. Food Chemistry, 160, 67–71. http//doi: 10.1016/j.foodchem.2014.03.055
Fernández, I. M., Mozombite, D. M. S., Santos, R. C., Melo Filho, A. A., Ribeiro, P. R. E., Chagas, E. A., Takahashi, J. A., Ferraz, V. P., Melo, A. C. G. R. & Maldonado, S. A. S. (2016). Oil in Inajá Pulp (Maximiliana maripa): Fatty Acid Profile and Anti-acetylcholinesterase Activity. Orbital: The Electronic Journal of Chemistry, 8 (2). https://dx.doi.org/10.17807/orbital.v7i4.769
Fraga, V. G., Carvalho, M. G., Caramelli, P., Sousa, L.P. & Gomes, K.B. (2017) Resolution of inflammation, n−3 fatty acid supplementation and Alzheimer disease: A narrative review. Journal Neuroimmunology. 15(310), 111–19. http//doi: 10.1016/j.jneuroim.2017.07.005
Folch, J., Lees, M. & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226 (1), 497-509. https://doi.org/10.1016/s0021-9258(18)64849-5
Hooijmans, C. R., Jong, P. C. M. P., Vries, R. B. M. & Ritskes-Hoitinga, M. (2012) The Effects of Long-Term Omega-3 Fatty Acid Supplementation on Cognition and Alzheimer’s Pathology in Animal Models of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Journal of Alzheimer’s Disease. 28, 191–209. http//doi: 10.3233/JAD-2011-111217
Huang, L., Su, T. & Li. X. (2013). Natural products as sources of new lead compounds for the treatment of Alzheimer’s disease. Current Topics in Medicinal Chemistry, 13(15),1864–1878. https://doi 10.2174/15680266113139990142
Huang, T. L., Zandi, P. P., Tucker, K. L., Fitzpatrick, A. L., Kuller, L., Fried, L. P., Burke, G. L. & Carlson, M. C. (2005). Benefits of fatty fish on dementia riskare stronger for those without APOE epsilon4. Neurology, 65,1409–14. https:// doi 10.1212/01.wnl.0000183148.34197.2e
Internation Union of Pure and Applied Chemistry (1987). Standard methods for the analysis of oils, fats and derivatives (7th ed). Oxford, UK: Blackwell Scientific Publications.
Itriago, C. V., Melo Filho, A. A., Ribeiro, P. R. E., Melo, A. C. G. R., Takahashi, J. A., Ferraz, V. P., Mozombited, D. M. S. & Santos, R. C. (2017). Inhibition of acetylcholinesterase and Fatty Acid Composition in Theobroma grandiflorum Seeds. Orbital: The Electronic Journal of Chemistry, 9 (3). http://dx.doi.org/10.17807/orbital.v0i0.894
James, M. J., Gibson, R. A. & Cleland, L. G. (2000) Dietary polyunsaturated fatty acids and inflammatory mediator production. American Journal of Clinical Nutrition, 71, 1(Suppl), 343S-348S. http://doi: 10.1093/ajcn/71.1.343s
Kerdiles, O., Lay, S. & Calon, F. (2017). Omega-3 polyunsaturated fatty acids and brain health: Preclinical evidence for the prevention of neurodegenerative diseases. Trends in Food Science and Technology, 69, 203-213. https://doi.org/10.1016/j.tifs.2017.09.003
Menezes, M. E. S., Lira, G. M. O., Mena, C. M. B. & Sant’ana, A. E. G. (2009). Nutritional value of fish off the coast of Alagoas, Brazil. Revista Instituto Adolfo Lutz, 68 (1), 21-28. http://periodicos.ses.sp.bvs.br/scielo.php?script=sci_abstract&pid=S0073-98552009000100003&lng=pt&nrm=iso&tlng=pt
Mesquita, T. R., Souza, A. A., Constantino, E., Pelógia, N. C. C., Posso, I. P. & Pires O. C. (2011). Anti-inflammatory effect of dietary supplementation with omega-3 fatty acids in rats. Revista Dor, 12 (4), 337-341. https://dx.doi.org/10.1590/S1806-00132011000400010
Morais, S.M., Silva, K.A., Araujo, H., Vieira, I.G.P., Alves, D.R., Fontenelle, R.O.S. & Silva, A.M.S. (2017). Anacardic Acid Constituents from Cashew Nut Shell Liquid: NMR Characterization and the Effect of Unsaturation on Its Biological Activities. Pharmaceuticals, 10 (31). http//doi:10.3390/ph10010031
Ozogul, Y. & Ozogul, F. (2007). Fatty acid profiles of commercially important fish species from the Mediterranean, Aegean and Black Seas. Food Chemistry, 100 (4), 1634–1638. https//doi: 10.1016/j.foodchem.2005.11.047
Ozogul, Y., Ozogul, F. & Alagoz S. (2007). Fatty acids profiles and fat contents of commercially important seawater and freshwater fish species of Turkey: A comparative study. Food Chemistry, 103, 217–223. http// doi:10.1016/j.foodchem.2006.08.009
Penfield, M. P. & Campbell, A. M. (1990). Experimental Food Science. (3th ed.) San Diego: Academic Press.
Penido, A. B., Morais, S. M., Ribeiro, A. B., Alves, D. R., Rodrigues, A. L. M., Santos, L. H. & Menezes, J. E. S. A. (2017). Medicinal Plants from Northeastern Brazil against Alzheimer’s Disease. Evidence-Based Complementary and Alternative Medicine, 1753673. https://doi.org/10.1155/2017/1753673
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. UAB/ NTE/ UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
Prato, E. & Biandolino, F. (2012). Total lipid content and fatty acid composition of commercially important fish species from the Mediterranean, Mar Grande Sea. Food Chemistry, 131 (4),1233–1239. https://doi.org/10.1016/j.foodchem.2014.03055.
Rhee, I. K., Meent, M. V. D., Ingkaninan, K. & Verpoorte, R. (2001). Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. Journal of Chromatografy, 915 (1-2), 217-23. https://doi:10.1016/s0021-9673(01)00624-0
Santos, R. C., Melo Filho, A. A., Chagas, E. A., Takahashi, J. A., Ferraz, V. P., Costa, A. K. P., Melo, A. C. G. R., Montero, I. F. & Ribeiro P. R. E. (2015). Fatty acid profile and bioactivity from Annona hypoglauca seeds oil. African Journal of Biotechnology, 14 (30). https://dx.doi.org/10.5897/AJB2015.14714
Santos, T. C., Gomes, T. M., Pinto, B. A. S., Camara, A. L.& Paes, A. M. A. (2018). Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer's Disease Therapy. Frontiers in Pharmacology, 18 (9), 1192. https://dx.doi: 10.3389/fphar.2018.01192
Song, C., Shieh, C., Wu, Y., Kalueff, A., Gaikwad, S. & Su, K. (2016). The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer's disease: Acting separately or synergistically? Progress in Lipid Research, 62,41–54. https://doi: 10.1016/j.plipres.2015.12.003
Trevisan, M. T. S., Macedo, F. V. V., Van Den Meent, M., Rhee, I. K. & Verpoorte, R.. (2003) Seleção de plantas com atividade anticolinesterase para tratamento da doença de Alzheimer. Química Nova, 26 (3), 301-4. https://dx.doi.org/10.1590/S0100-40422003000300002
Vedin, I., Cederholm, T., Freund-Levi, Y., Basun, H., Garlind, A., Irving, G. F., Eriksdotter-Jönhagen, M., Wahlund, L. O., Dahlman, I. & Palmblad, J. (2012). Effects of DHA-rich n-3 fatty acid supplementation on gene expression in blood mononuclear leukocytes: the omegad study. Plos One. 7(4), e35425. http://doi: 10.1371/journal.pone.0035425
Vinutha, B., Prashanth, D., Salma, K., Sreeja, S. L., Pratiti, D., Padmaja, R., Radhika, S., Amit, A., Venkateshwarlu, K. & Deepak, M. (2007). Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. Journal of Ethnopharmacology, 109 (2), 359-363. https://doi:10.1016/j.jep.2006.06.014
Wu, S., Ding, Y., Wu, F., Li, R., Hou, J. & Mao, P. (2015) Omega-3 fatty acids intake and risks of dementia and Alzheimer’s disease: A meta-analysis. Neuroscience & Biobehavioral Reviews, 48, 1–9. https//: doi 10.1016/j.neubiorev.2014.11.008
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Séfura Maria Assis Moura; Selene Maia de Morais; José Osvaldo Beserra Carioca; Ana Livya Moreira Rodrigues; Daniela Ribeiro Alves; Francisco Felipe Maia da Silva ; Ana Carolina Silva e Silva; Sheyla Maria Barreto Amaral ; Ysabele Yngrydh Valente Silva

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.