Simulation of packed bed with binary mixtures of particles differing in size using correlations and the Discrete Elements Method




minimum porosity; Minimum porosity; particle mixture; Particle mixture; packing; Packing; DEM; parametric calibration; Parametric calibration.


The spouted bed is an equipment highly influenced by the porosity of the static bed. Thus, this work aimed to employ literature correlations and the discrete element method to simulate the packing of monoparticle beds and binary mixtures of 1 and 4 mm spheres. The experimental minimum porosity was 0.267, and the Dias correlation agreed well with experimental data and was able to distinguish the occupation and filling packing regimes adequately. Regarding the simulations using the Discrete Element Method, the parameters calibration of the Hertz-Mindlin contact force model showed that the particle-particle static friction coefficient is the factor that most influences the packing, followed by the particle-to-particle friction coefficient bearing friction coefficient, while the particle-to-wall bearing friction coefficient did not influence the bed voidage. The simulations adequately represented the transition between the occupation and filling regimes that govern packing.

Author Biography

Kassia Graciele dos Santos, Universidade Federal do Triangulo Mineiro

Chemical Engineering Department


Almeida, N. P., Canhadas, M. C., Albertini, M. R. M. C., Santos, K. G. & Vieira Neto, J. L. (2020). Solid-fluid separation in the gravitational field: Courseware generation using computational fluid dynamics simulation. Computer Applications in Engineering Education, cae.22327, 1-14.

Araújo, B. S. A. & Santos, K. G. (2017). CFD Simulation of Different Flow Regimes of the Spout Fluidized Bed with Draft Plates. Material Science Forum, 899, 89-94.

Batista Júnior, R., Vieira Neto, J. L. & Santos, K. G. (2019). Estudos de simulação CFD-DEM em um Leito de Jorro Cônico. Revista Brasileira de Ciência, Tecnologia e Inovação, 4, 284-294.

Cleary, P. W. (2008). The effect of particle shape on simple shear flows. Powder Technology, 179, 144-163.

Cundall, P. A. & Strack, O. D. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29, 47-65.

Dias, R. P., Teixeira, J. A., Mota, M. G. & Yelshin, A. I. (2004). Particulate Binary Mixtures: Dependence of Packing Porosity on Particle Size Ratio. Industrial Engineering Chemistry Research, 43, 7912-7919.

Faria, E. V., Sousa, N. G. & Santos, K. G. (2020). Experimental and numerical study of the heating profile of a solar oven applied to drying. Research, Society and Development, 9(7), e555974368.

Graton, L. C. & Fraser, H. J. J. (1935). Systematic Packing of spheres with particular relation to porosity and permeability. Journal of Geology, 43(8), 785-909.

Gravena, G. F., Vieira Neto, J. L., Santos, K. G. & Silvério, B. C. (2019). Estudo da influência dos coeficientes de atrito estático e fricção de rolamento em simulações DEM de tambores rotativos com suspensores. Brazilian Journal of Development, 5, 20800-20811.

Hertz, H. (1882). On the contact of elastic solids. J. reine und angewandte Mathematik, 92, 156-171.

Hlosta, J., Jezerská, L., Rozbroj, J., Žurovec, D., Neˇcas, J. & Zegzulka, J. (2020). DEM Investigation of the Influence of Particulate Properties and Operating Conditions on the Mixing Process in Rotary Drums: Part 1–Determination of the DEM Parameters and Calibration Process. Processes, 8(2), 222.

Lacerda, A. F. M., Vieira, L. G., Nascimento, A. M., Nascimento, S. D., Damasceno, J. J. R. & Barrozo, M. A. S. (2005). Computational Fluid dynamics techniques for flows in Lapple Cyclone separator. Materials Science Forum, 498-499, 179-185.

Mangucci, C. B., Stoppe, A. C. R., Morais, A. A., Melo, Y. A., Merola, G. N., Santos, K. G. (2020). Construction of a dust chamber didactic kit and computational fluid dynamics assessment: an active learning practice. Research, Society and Development, 9(11), e41691110069.

Mindlin, R. D. (1949). Compliance of elastic bodies in contact. J. Appl. Mech., 16(3), 259-268.

Mindlin, R. D. & Deresiewicz, H. (1953). Elastic spheres in contact under varying oblique forces. J. Appl. Mech. Sep 1953, 20(3), 327-344.

Mota, M., Teixeira, J.A., Bowen, W. R., Yelshin, A. (2001). Binary spherical particle mixed beds: porosity and permeability relationship measurement. Transactions of the Filtration Society, 1, 101-106.

Paula, J. A. A., Faria, E. V., Lima, A. C. P., Vieira Neto, J. L. & Santos, K. G. (2020). Computational simulation of soybean particles flow in a hopper using computational fluid dynamics (CFD) and discrete elements method (DEM). Research, Society and Development, 9(8), e448985463.

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS, Brasil: UAB/NTE/UFSM.

Rocha, A. A., Stoppe, A. C. R., Silvério, B. C., Santos, K. G. & Vieira Neto, J. L. (2020). Drying of malt residues in a solar greenhouse and in a fixed bed solar dryer. Research, Society and Development, 9(7), e447974335.

Santos, K. G. Aspectos fundamentais da pirólise de biomassa em leito de jorro: Cinética e fluidodinâmica do processo, Tese de doutorado, FEQUI-UFU, Uberlândia-MG, 235p., 2011.

Santos, K. G., Campos, A. V. P, Ferreira, L. V. & Barrozo, M. A. S. (2013). Fluid Dynamics of a Sand-Biomass Mixture in a Spouted-Bed Reactor for Fast Pyrolysis. Chemical Engineering & Technology, 36(12), 2148-2154.

Santos, K. G., Ferreira, L. V., Santana, R. C. & Barrozo, M. A. S. (2017). CFD simulation of spouted bed working with a size distribution of sand particles: Segregation aspects. Materials Science Forum, 899, 95-100.

Santos, K. G., Francisquetti, M. C. C., Malagoni, R. A. & Barrozo, M. A. S. (2015). Fluid Dynamic Behavior in a Spouted Bed with Binary Mixtures Differing in Size. Drying Technology, 33(14), 1746-1757.

Santos, K. G., Murata, V. V., Barrozo, M. A. S. (2009). Three-dimensional computational fluid dynamics modeling of spouted bed. Canadian Journal of Chemical Engineering, 87(2), 211-219.

Silvério, B. C., Santos, K. G., Duarte, C. R. & Barrozo, M. A. S. (2014). Effect of the Friction, Elastic, and Restitution Coefficients on the Fluid Dynamics Behavior of a Rotary Dryer Operating with Fertilizer. Ind. Eng. Chem. Res., 53(21), 8920-8926.

Stoppe, A. C. R., Vieira Neto, J. L. & Santos, K. G. (2020). Development of a fixed bed solar dryer: experimental study and CFD simulation. Research, Society and Development, 9(3), e123932667.

Tsuji, T., Shibata, T., Yamaguchi, K. & Uemaki, O. (1989), Mathematical Modelling of Spouted Bed Coal Gasification. Proceeding of the International Conference on Coal Science. Tokyo (Japan), 457-460.

Ullmann, G., Gonçalves, S. M., Kyriakidis, Y. N., Barrozo, M. A. S. & Vieira, L. G. M. (2021). Optimization study of thickener hydrocyclones. Minerals Engineering, 170, 107066.

Vieira Neto, J. L., Barrozo, M. A. S., Duarte, C. R., Murata, V. V. (2008), Effect of a draft tube on the fluid dynamics of a spouted bed: Experimental and CFD Studies. Drying Technology, 26(3), 299-307.

Vieira Neto, J. L. ; Costa, D. D. L., Souza, L. V. ; Pires, R. F., Souza, D. L., Silvério, B. C. & Santos, K. G. (2017). A Fluid Dynamic Study in a Rotating Disk Applied in Granulation of Fertilizers. Materials Science Forum, 899, 142-147.

Yu, A. B., Standish, N. & Mclean, A. (1993). Porosity Calculation of Binary Mixtures of Nonspherical Particles. Journal of the American Ceramic Society, 76(11), 2813-2816.

Yu, A. B., Zou, R. P. & Standish, N. (1996). Modifying the linear packing model for predicting the porosity of nonspherical particle mixtures. Ind. Eng. Chem. Res., 35(10), 3730-3741.

Yu, A. B. & Standish, N. (1991). Estimation of the porosity of particle mixtures by a linear-mixture packing model, Ind. Eng. Chem. Res., 30(6), 1372-1385.

Yu, A. B., & Standish, N. (1988). An analytical-parametric theory of the random packing of particles. Powder Technology, 55(3), 171-186.



How to Cite

FERREIRA, D. B.; SANTANA, R. C. de; BARROZO, M. A. de . S.; SOUZA, D. L. de; VIEIRA NETO, J. L. .; SANTOS, K. G. dos. Simulation of packed bed with binary mixtures of particles differing in size using correlations and the Discrete Elements Method. Research, Society and Development, [S. l.], v. 10, n. 10, p. e553101019012, 2021. DOI: 10.33448/rsd-v10i10.19012. Disponível em: Acesso em: 20 oct. 2021.