Simulação de leito empacotado com misturas binárias de esferas de diâmetros diferentes empregando correlações e o Método de Elementos Discretos

Autores

DOI:

https://doi.org/10.33448/rsd-v10i10.19012

Palavras-chave:

Porosidade mínima; porosidade mínima; Mistura de partículas; mistura de partículas; Empacotamento; empacotamento; DEM; Calibração paramétrica.; calibração paramétrica

Resumo

O leito de jorro é um equipamento altamente influenciado pela porosidade do leito estático. Assim, este trabalho teve o objetivo de empregar correlações da literatura e o método de elementos discretos na simulação do empacotamento de leitos de monopartículas e misturas binárias de esferas de 1 e 4 mm. A porosidade mínima experimental foi 0,267, sendo que a correlação de Dias foi a que mais se aproximou do valor experimental e que conseguiu distinguir adequadamente os regimes de empacotamento de ocupação e preenchimento. Quanto às simulações empregando o Método de Elementos Discretos, a calibração dos parâmetros do modelo de força de contato de Hertz-Mindlin mostrou que o coeficiente de atrito estático partícula-partícula é a variável que mais influencia a operação de empacotamento, seguido pelo coeficiente de atrito de rolamento partícula-partícula, enquanto o coeficiente de atrito de rolamento partícula-parede não influenciou a porosidade do leito. As simulações representaram adequadamente a transição entre os regimes de ocupação e enchimento que regem o empacotamento.

Biografia do Autor

Kassia Graciele dos Santos, Universidade Federal do Triangulo Mineiro

Chemical Engineering Department

Referências

Almeida, N. P., Canhadas, M. C., Albertini, M. R. M. C., Santos, K. G. & Vieira Neto, J. L. (2020). Solid-fluid separation in the gravitational field: Courseware generation using computational fluid dynamics simulation. Computer Applications in Engineering Education, cae.22327, 1-14. https://doi.org/10.1002/cae.22327

Araújo, B. S. A. & Santos, K. G. (2017). CFD Simulation of Different Flow Regimes of the Spout Fluidized Bed with Draft Plates. Material Science Forum, 899, 89-94. https://doi.org/10.4028/www.scientific.net/MSF.899.89

Batista Júnior, R., Vieira Neto, J. L. & Santos, K. G. (2019). Estudos de simulação CFD-DEM em um Leito de Jorro Cônico. Revista Brasileira de Ciência, Tecnologia e Inovação, 4, 284-294. https://doi.org/10.18554/rbcti.v4i3.3885

Cleary, P. W. (2008). The effect of particle shape on simple shear flows. Powder Technology, 179, 144-163. https://doi.org/10.1016/j.powtec.2007.06.018

Cundall, P. A. & Strack, O. D. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29, 47-65. https://doi.org/10.1680/geot.1979.29.1.47

Dias, R. P., Teixeira, J. A., Mota, M. G. & Yelshin, A. I. (2004). Particulate Binary Mixtures: Dependence of Packing Porosity on Particle Size Ratio. Industrial Engineering Chemistry Research, 43, 7912-7919. https://doi.org/10.1021/ie040048b

Faria, E. V., Sousa, N. G. & Santos, K. G. (2020). Experimental and numerical study of the heating profile of a solar oven applied to drying. Research, Society and Development, 9(7), e555974368. https://doi.org/10.33448/rsd-v9i7.4368

Graton, L. C. & Fraser, H. J. J. (1935). Systematic Packing of spheres with particular relation to porosity and permeability. Journal of Geology, 43(8), 785-909. https://doi.org/10.1086/624386

Gravena, G. F., Vieira Neto, J. L., Santos, K. G. & Silvério, B. C. (2019). Estudo da influência dos coeficientes de atrito estático e fricção de rolamento em simulações DEM de tambores rotativos com suspensores. Brazilian Journal of Development, 5, 20800-20811. https://doi.org/10.34117/bjdv5n10-257

Hertz, H. (1882). On the contact of elastic solids. J. reine und angewandte Mathematik, 92, 156-171.

Hlosta, J., Jezerská, L., Rozbroj, J., Žurovec, D., Neˇcas, J. & Zegzulka, J. (2020). DEM Investigation of the Influence of Particulate Properties and Operating Conditions on the Mixing Process in Rotary Drums: Part 1–Determination of the DEM Parameters and Calibration Process. Processes, 8(2), 222. https://doi.org/10.3390/pr8020222

Lacerda, A. F. M., Vieira, L. G., Nascimento, A. M., Nascimento, S. D., Damasceno, J. J. R. & Barrozo, M. A. S. (2005). Computational Fluid dynamics techniques for flows in Lapple Cyclone separator. Materials Science Forum, 498-499, 179-185. http://dx.doi.org/10.4028/www.scientific.net/msf.498-499.179

Mangucci, C. B., Stoppe, A. C. R., Morais, A. A., Melo, Y. A., Merola, G. N., Santos, K. G. (2020). Construction of a dust chamber didactic kit and computational fluid dynamics assessment: an active learning practice. Research, Society and Development, 9(11), e41691110069. https://doi.org/10.33448/rsd-v9i11.10069

Mindlin, R. D. (1949). Compliance of elastic bodies in contact. J. Appl. Mech., 16(3), 259-268. https://doi.org/10.1115/1.4009973

Mindlin, R. D. & Deresiewicz, H. (1953). Elastic spheres in contact under varying oblique forces. J. Appl. Mech. Sep 1953, 20(3), 327-344. https://doi.org/10.1115/1.4010702

Mota, M., Teixeira, J.A., Bowen, W. R., Yelshin, A. (2001). Binary spherical particle mixed beds: porosity and permeability relationship measurement. Transactions of the Filtration Society, 1, 101-106. http://hdl.handle.net/1822/1403

Paula, J. A. A., Faria, E. V., Lima, A. C. P., Vieira Neto, J. L. & Santos, K. G. (2020). Computational simulation of soybean particles flow in a hopper using computational fluid dynamics (CFD) and discrete elements method (DEM). Research, Society and Development, 9(8), e448985463. https://doi.org/10.33448/rsd-v9i8.5463

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS, Brasil: UAB/NTE/UFSM.

Rocha, A. A., Stoppe, A. C. R., Silvério, B. C., Santos, K. G. & Vieira Neto, J. L. (2020). Drying of malt residues in a solar greenhouse and in a fixed bed solar dryer. Research, Society and Development, 9(7), e447974335. https://doi.org/10.33448/rsd-v9i7.4335

Santos, K. G. Aspectos fundamentais da pirólise de biomassa em leito de jorro: Cinética e fluidodinâmica do processo, Tese de doutorado, FEQUI-UFU, Uberlândia-MG, 235p., 2011. https://repositorio.ufu.br/handle/123456789/15058

Santos, K. G., Campos, A. V. P, Ferreira, L. V. & Barrozo, M. A. S. (2013). Fluid Dynamics of a Sand-Biomass Mixture in a Spouted-Bed Reactor for Fast Pyrolysis. Chemical Engineering & Technology, 36(12), 2148-2154. https://doi.org/10.1002/ceat.201300356

Santos, K. G., Ferreira, L. V., Santana, R. C. & Barrozo, M. A. S. (2017). CFD simulation of spouted bed working with a size distribution of sand particles: Segregation aspects. Materials Science Forum, 899, 95-100. https://doi.org/10.4028/www.scientific.net/MSF.899.95

Santos, K. G., Francisquetti, M. C. C., Malagoni, R. A. & Barrozo, M. A. S. (2015). Fluid Dynamic Behavior in a Spouted Bed with Binary Mixtures Differing in Size. Drying Technology, 33(14), 1746-1757. https://doi.org/10.1080/07373937.2015.1036284

Santos, K. G., Murata, V. V., Barrozo, M. A. S. (2009). Three-dimensional computational fluid dynamics modeling of spouted bed. Canadian Journal of Chemical Engineering, 87(2), 211-219. https://doi.org/10.1002/cjce.20149

Silvério, B. C., Santos, K. G., Duarte, C. R. & Barrozo, M. A. S. (2014). Effect of the Friction, Elastic, and Restitution Coefficients on the Fluid Dynamics Behavior of a Rotary Dryer Operating with Fertilizer. Ind. Eng. Chem. Res., 53(21), 8920-8926. https://doi.org/10.1021/ie404220h

Stoppe, A. C. R., Vieira Neto, J. L. & Santos, K. G. (2020). Development of a fixed bed solar dryer: experimental study and CFD simulation. Research, Society and Development, 9(3), e123932667. https://doi.org/10.33448/rsd-v9i3.2667

Tsuji, T., Shibata, T., Yamaguchi, K. & Uemaki, O. (1989), Mathematical Modelling of Spouted Bed Coal Gasification. Proceeding of the International Conference on Coal Science. Tokyo (Japan), 457-460. https://www.osti.gov/etdeweb/biblio/7271318

Ullmann, G., Gonçalves, S. M., Kyriakidis, Y. N., Barrozo, M. A. S. & Vieira, L. G. M. (2021). Optimization study of thickener hydrocyclones. Minerals Engineering, 170, 107066. http://doi.org/10.1016/j.mineng.2021.107066

Vieira Neto, J. L., Barrozo, M. A. S., Duarte, C. R., Murata, V. V. (2008), Effect of a draft tube on the fluid dynamics of a spouted bed: Experimental and CFD Studies. Drying Technology, 26(3), 299-307. https://doi.org/10.1080/07373930801897994

Vieira Neto, J. L. ; Costa, D. D. L., Souza, L. V. ; Pires, R. F., Souza, D. L., Silvério, B. C. & Santos, K. G. (2017). A Fluid Dynamic Study in a Rotating Disk Applied in Granulation of Fertilizers. Materials Science Forum, 899, 142-147. https://doi.org/10.4028/www.scientific.net/MSF.899.142

Yu, A. B., Standish, N. & Mclean, A. (1993). Porosity Calculation of Binary Mixtures of Nonspherical Particles. Journal of the American Ceramic Society, 76(11), 2813-2816. https://doi.org/10.1111/j.1151-2916.1993.tb04021.x

Yu, A. B., Zou, R. P. & Standish, N. (1996). Modifying the linear packing model for predicting the porosity of nonspherical particle mixtures. Ind. Eng. Chem. Res., 35(10), 3730-3741. https://doi.org/10.1021/ie950616a

Yu, A. B. & Standish, N. (1991). Estimation of the porosity of particle mixtures by a linear-mixture packing model, Ind. Eng. Chem. Res., 30(6), 1372-1385. https://doi.org/10.1021/ie00054a045

Yu, A. B., & Standish, N. (1988). An analytical-parametric theory of the random packing of particles. Powder Technology, 55(3), 171-186. https://doi.org/10.1016/0032-5910(88)80101-3

Downloads

Publicado

18/08/2021

Como Citar

FERREIRA, D. B.; SANTANA, R. C. de; BARROZO, M. A. de . S.; SOUZA, D. L. de; VIEIRA NETO, J. L. .; SANTOS, K. G. dos. Simulação de leito empacotado com misturas binárias de esferas de diâmetros diferentes empregando correlações e o Método de Elementos Discretos. Research, Society and Development, [S. l.], v. 10, n. 10, p. e553101019012, 2021. DOI: 10.33448/rsd-v10i10.19012. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19012. Acesso em: 30 jun. 2024.

Edição

Seção

Engenharias