Use of permeable concrete with additives in wastewater treatment, focusing on biochar: a review
DOI:
https://doi.org/10.33448/rsd-v10i10.19111Keywords:
Porous concrete; Biochar; Permeability; Porosity; Adsorbent properties.Abstract
In large urban centers, the constant waterproofing of roads intensifies flooding and flooding, causing countless inconveniences to the population. The use of permeable concrete as a rainwater and wastewater drainage mechanism has been a partial solution to this type of drainage problem, including the addition in its composition of materials with adsorbent properties aimed at improving physical-chemical and biological parameters from water. Therefore, this article aims to bring important results from several studies using permeable concrete with mineral additions and show the benefits in mechanical and adsorbent properties of this type of concrete, with emphasis on the use of biochar. For this, the methodology chosen was to do a brief literature review, in which completed researches available in online databases such as Scopus, Science Direct from the year 2015 were analyzed using as descriptors in English: “Concrete” AND “Biochar ”, “Concrete porous” AND “Biochar”, “Pervious concrete” AND “Biochar”, “Treatment of water” AND “Concrete porous”, “Cementitious materials” AND “Biochar”. 51 references were selected and specified as follows: 48 scientific articles, 1 standard and 2 book chapters. It was found that the addition of adsorbent minerals and biochar in concrete can improve water quality parameters such as decreased turbidity, total nitrogen (NT), Total Phosphorus (PT), COD, BOD, among others, and promote, in in some cases, mechanical strength gain of the concrete produced.
References
Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., & Chen, M (2016). Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresource Technology. 836-851. https://doi.org/10.1016/j.biortech.2016.05.057
Akhtar, A., & Sarmah, A. K. (2018). Novel biochar-concrete composites: Manufacturing, characterization and evaluation of the mechanical properties. Science of The Total Environment. 616-617. 408-416. https://doi.org/10.1016/j.scitoten 2017.10.319
Akinyemi, B. A., & Adesina, A (2020). Recent advancements in the use of biochar for cementitious applications: A review. Journal of Building Engineering. 32, 1-13. https://doi.org/10.1016/j.jobe.2020.101705
Banik. C., Lawrinenko, M. Bakshi, S. & Laird, D. A (2018). Impact of Pyrolysis Temperature and Feedstock on Surface Charge and Functional Group Chemistry of Biochars. Journal of Environmental Quality. 47, 452-461. 10.2134/jeq2017.11.0432
Cahya, E. N., Arifi, E., & Haribowo, R (2020). Recycled porous concrete effectiveness for filtration material on wastewater treatment. International Journal of GEOMATE. Geotechnique, Construction Materials and Environment. 18(70), 209 – 214. https://doi.org/10.21660/2020.70.9266
Cha, J. S., et al. (2016). Production and Utilization of Biochar: A Review. Journal of Industrial and Engineering Chemistry. 1-65. http://dx.doi.org/10.1016/j.jiec.2016.06.002
Chandrappa, A. K., & Biligiri, K. (2016). Pervious concrete as a sustainable pavement material–Research findings and future prospects: A state-of-the-art review. Construction and Building Materials. 111. 262-274. https://doi.org/10.1016/j.conbuildmat.2016.02.054
Chandrappa, A. K. & Biligiri, K. P (2016). Comprehensive investigation of permeability characteristics of pervious concrete: A hydrodynamic approach. Construction and Building Materials. 123. 627-637. https://doi.org/10.1016/j.conbuildmat.2016.07.035
Cosentino, I. Restuccia, L. Ferro, G. A. & Tulliani, J. M (2019). Type of materials, pyrolysis conditions, carbon content and size dimensions: The parameters that influence the mechanical properties of biochar cement based composites. Theoretical and Applied Fracture Mechanics. 103. 1-10. https://doi.org/10.1016/j.tafmec.2019.102261
Dixit, A. Gupta, S. Pang, S. D. Kua, & H. W (2019). Waste Valorisation using biochar for cement replacement and internal curing in ultra-high performance concrete. Journal of Cleaner Production. 238. 1-14. https://doi.org/10.1016/j.jclepro.2019.117876
Dixit, A. Gupta, S. Pang, S. D. & Kua, H. W (2020). Cement Replacement and Improved Hydration in Ultra-High Performance Concrete Using Biochar. 3rd International Conference on the Application of Superabsorbent Polymers (SAP) and Other New Admixtures Towards Smart Concrete. RILEM. 24. 222-229. https://doi.org/10.1007/978-3-030-33342-3_24
Faisal, G. H., Thaar, A. J. J., & Gasham, S. A. (2020). BOD and COD reduction using porous concrete pavements. Case Studies in Construction Materials. 13. 1-16. https://doi.org/10.1016/j.cscm.2020.e00396
Falliano, D. Domenico, D De. Sciarrone, A. Ricciardi, G. Restuccia, L. Ferro, G. Tulliani, J. M. & Gugliandolo, E (2020). Influence of biochar additions on the fracture behavior of foamed concrete. Frattura ed Integrità Strutturale. 51, 189-198. 10.3221/IGF-ESIS.51.15
Gupta, S., & Kua, H. W. (2020a). Effect of water entrainment by pre-soaked biochar particles on strength and permeability of cement mortar. Construction Building Materials. 159. 107-125. https://doi.org/10.1016/j.conbuildmat.2017.10.095
Gupta, S., Kua, H. W., & Dai, S (2020b). Effect of biochar on mechanical and permeability properties of concrete exposed to elevated temperature. Construction Building. Materials. 234. 1-16. https://doi.org/10.1016/j.conbuildmat.2019.117338
Gupta, S., & Kua, H. W. (2017). Biochar as a carbon sequestering construction material in cementitious mortar. Academic Journal of Civil Engineering, 35(2), 563-568. https://doi.org/10.26168/icbbm2017.85
Gwenzi, W., Chaukura, N., Mukome, F. N. D., Machado, S., & Nyamasoka B. (2015). Biochar production and applications in sub-Saharan Africa: Opportunities, constraints, risks and uncertainties. Journal of Environmental Management. 150. 250-261. http://dx.doi.org/10.1016/j.jenvman.2014.11.027
Gwenzi, W., Chaukura, N., Noubactep, C., & Mukome, F. N. D. (2017). Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. Journal of Environmental Management. 197, 732-749. http://dx.doi.org/10.1016/j.jenvman.2017.03.087
Huggins, T. M., Haeger, A., Biffinger, J. C., & Ren, Z. J (2016). Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Research. 94. 225-232. http://dx.doi.org/10.1016/j.watres.2016.02.059
Inyang, M. & Dickenson, E (2015). The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere. 134. 232-240. http://dx.doi.org/10.1016/j.chemosphere.2015.03.072
Jaeel, A. J., & Faisal, G. H. (2018). COD Removal from Synthetic Wastewater Using Pervious Concrete. International Conference on Advances in Sustainable Engineering and Applications (ICASEA). 10.1109 / ICASEA.2018.8370978
Kamali, M., Appels L., Kwon, E. E., Aminabhavi, T. M., & Dewil, R (2021). Biochar in water and wastewater treatment – a sustainability assessment. Chemical Engineering Journal. 420. 1-21. https://doi.org/10.1016/j.cej.2021.129946
Kim, G. M., Jang, J. G., Khalid, H. R., & Lee, H. K. (2017). Water purification characteristics of pervious concrete fabricated with CSA cement and bottom ash aggregates. Construction and Building Materials. 136. 1-8. http://dx.doi.org/10.1016/j.conbuildmat.2017.01.020
Koupai, J. A., Nejad, S. S., Fard, S. M., & Behfarnia, K (2015). Reduction of Urban Storm-Runoff Pollution Using Porous Concrete Containing Iron Slag Adsorbent. Journal of Environmental Engineering. 04015072. 1-7. 10.1061/(ASCE)EE.1943-7870.0001025.
Lee, J. Sarmah, A. K., & Kwon, E. E (2019). Chapter 1 - Production and Formation of Biochar. Biochar from Biomass and Waste. I Biochar Production. p.1-16. https://doi.org/10.1016/B978-0-12-811729-3.00001-7
Li, S. Harris, S.Anandhi, A. & Chen, G (2019). Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. Journal of Cleaner Production. 215. 890-902. https://doi.org/10.1016/j.jclepro.2019.01.106
Liang, X. Cui, S. Li, H. Abdelhady, A. Wang, H. & Zhou, H (2019). Removal effect on stormwater runoff pollution of porous concrete treated with nanometer titanium dioxide. Transportation Research Part D. 73. 34-45. https://doi.org/10.1016/j.trd.2019.06.001
Lyu, H. He, Y. Tang, J. Hecker, M. Liu, Q. Jones, D. Codling, G., & Giesy, J. P (2016). Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment. Environmental Pollution. 218. 1-7. http://dx.doi.org/10.1016/j.envpol.2016.08.014
Maljaee, H., Madadi, R., Paiva, H., Tarello, L., & Ferreira, M (2021). Incorporation of biochar in cementitious materials: A roadmap of biochar selection. Construction and Building Materials. 283. 1-18. https://doi.org/10.1016/j.conbuildmat.2021.122757
Mrad, R. & Chehab, G (2019). Mechanical and Microstructure Properties of Biochar-Based Mortar: An Internal Curing Agent for PCC. Journal Sustainability. 2491. 1-15. 10.3390/su11092491
Nejad, S. S. Koupai, J. A. Fard, S. M. & Behfarnia, K (2017). Treatment of urban storm water using adsorbent porous concrete.Water Management. 1-7. http://dx.doi.org/10.1680/jwama.15.00127
NRMCA-Concrete in Practice-38 (CIP-38), National Ready Mix Concrete Association (NRMCA). 2010.
Praneeth, S. Saavedra, L. Zenga, M. Dubey, B. K. & Sarmah, A. K (2021). Biochar admixtured lightweight, porous and tougher cement mortars: Mechanical, durability and micro computed tomography analysis. Science of The Total Environment. 750. 1-11. https://doi.org/10.1016/j.scitoten 2020.142327
Qambrani, N. A., Rahman, M. M., Won, S., Shim, S. & Ra, C (2017). Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews. 79. 255-273. https://doi.org/10.1016/j.rser.2017.05.057
Qin, Y., Pang, X., Tan, K., & Bao, T (2021). Evaluation of pervious concrete performance with pulverized biochar as cement replacement. Cement and Concrete Composites. 119. 1-9. https://doi.org/10.1016/j.cemconcomp.2021.104022
Restuccia, L. et al (2020). Mechanical characterization of different biochar-based cement composites. 1st Virtual Conference on Structural Integrity - VCSI1. Procedia Structural Integrity. 25. 226-233.
Sandoval, G. F.B. et al. (2020). Proposal of maintenance methodology for pervious concrete (PC) after the phenomenon of clogging. 248. p.1-12. https://doi.org/10.1016/j.conbuildmat.2020.118672
Sirico, A. et al. (2020). Mechanical characterization of cement-based materials containing biochar from gasification. Construction and Building Materials. 246. 1-11. https://doi.org/10.1016/j.conbuildmat.2020.118490
Suliman, W. Harsh, JB. Lail, NIA. Fortuna, AM. Dallmeyer, I. Perez, MG (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy. 84. 37-48. http://dx.doi.org/10.1016/j.biombioe.2015.11.010
Tan, K., Pang, X., Qin, Y, &. Wang, J (2020). Properties of cement mortar containing pulverized biochar pyrolyzed at different temperatures. Construction and Building Materials. 263. 1-11. https://doi.org/10.1016/j.conbuildmat.2020.120616
Tan, X. Liu, Y. Zeng, G. Wang, X. Hu, X. Gu, Y. & Yang, Z (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere. 125. 70-85. http://dx.doi.org/10.1016/j.chemosphere.2014.12.058
Teymouri, E. Mousavi, S. F. Karami, H. Farzin, S. & Kheirabad, M. H. (2020a). Reducing Urban Runoff Pollution Using Porous Concrete Containing Mineral Adsorbents. Journal Environmental Treatment Techniques. 8, Issue 1, 429-436. http://www.jett.dormaj.com
Teymouri, E. Mousavi, S. F. Karami, H. Farzin, S. & Kheirabad, M. H (2020b). Municipal Wastewater pretreatment using porous concrete containing fine-grained mineral adsorbents. Journal of Water Process Engineering. 36. 1-9. https://doi.org/10.1016/j.jwpe.2020.101346
Tripathi, M.Sahu, J. N. & Ganesan, P (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews. 55. 467-481. http://dx.doi.org/10.1016/j.rser.2015.10.122
Tsang, D. C. W., Yu, I. K. M., & Xiong, X (2019). Chapter 18 - Novel Application of Biochar in Stormwater Harvesting. Biochar from Biomass and Waste. III Applications. 1-29. https://doi.org/10.1016/B978-0-12-811729-3.00018-2
Wang, L. Chen, L. Tsang, D. C. W. Guo, B. Yang, J. Shen, Z. Hou, D. Ok, Y. S. & Poon, C. S (2020). Biochar as green additives in cement-based composites with carbon dioxide curing. Journal of Cleaner Production. 258. 1-8. https://doi.org/10.1016/j.jclepro.2020.120678
Wei, S. Zhu, M. Fan, X. Song, J. Li, K.. Jia, W. & Song, H (2019). Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge. Chemosphere. 218. 624-631. https://doi.org/10.1016/j.chemosphere.2018.11.177
Xie, C. Yuan, L. Tan. H. Zhang, Y. Zhao, M. & Jia, Y (2021). Experimental study on the water purification performance of biochar-modified pervious concrete. Construction and Building Materials. 285. 1-7. https://doi.org/10.1016/j.conbuildmat.2021.122767
Yin, Q. Zhang, B. Wang, R. & Zhao, Z (2017). Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: a review. Environmental Science and Pollution Research. 1-13. 10.1007/s11356-017-0338-y
Zeidabadi, ZA. Bakhtiari, S. Abbaslou, H. & Ghanizadeh, A. R (2018). Synthesis, characterization and evaluation of biochar from agricultural waste biomass for use in building materials. Construction and Building Materials. 181. 301-308. https://doi.org/10.1016/j.conbuildmat.2018.05.271
Zhang, R. Kanemaru, K. & Nakazawa, T (2015). Purification of River Water Quality Using Precast Porous Concrete Products. Journal of Advanced Concrete Technology. 13. 163-168. 10.3151/jact.13.163
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Fabio de Souza Clementino; Jéssica Machado Santiago; Heitor Fernandes de Sousa; Italo Gutierry Carneiro da Conceição; Hudson Chagas dos Santos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.