Soil macrofauna as a bioindicator of soil quality in successional agroforestry systems

Authors

DOI:

https://doi.org/10.33448/rsd-v10i10.19144

Keywords:

Biodiversity; Soil fauna; Biological indicators; Soil recovery.

Abstract

The objective of this study was to evaluate soil macrofauna as a bioindicator of soil quality in successional agroforestry systems and secondary forests. The study was conducted in the southern lower region of Bahia in Brazil, in two areas: a successional agroforestry system (AFS18) and native forest (NF).  AFS18 consists of two species: mahogany (Khaya ivorensis and Khaya grandifoliola), açaí (Euterpe oleracea), cacao (Theobroma cacau) and banana (Musa spp.).  Sampling was carried out in the dry (June) and rainy (October) seasons of 2019, and eight soil monoliths were collected in both areas.  A total of 889 individuals from the soil macrofauna were sampled. The highest frequency (RF) of taxons occurred in NF in the rainy season, and the groups that stood out were: Oligochaeta with 42% FR in ASF18, Formicide with 33.9% in NF and Isoptera with 58% in AFS18. The macrofauna structure of the soil varied according to the time of collection. The density of macrofauna individuals differed between areas only in the dry season. The highest number of ind.m² was observed in the area NF (378) when compared to ASF18 (196). TOC, Mg2+, Al3+ and CTC were related to AF on both occasions of collection and AFS18 in the rainy season, K+, P and pH were associated with AFS18 in the dry season. The diversity, equitability and richness of the soil macrofauna was greater in AF area. HFA18 in the rainy season was similar to NF, favoring colonization of the area by soil macrofauna organisms.

References

Ab’Saber, N. A. (2000). Fundamentos da geomorfologia costeira do Brasil atlântico iter e subtropical. Revista Brasileira de Geomorfologia, 1:27-43. UGB/UFU Uberlândia.

Anderson, J. M., Ingram, J. S. I. (1993). Tropical soil biological and fertility: A Handbook of methods. 2. ed. Wallingford: C.A.B. International.

Alves, T. S., Campos, L. L., Neto, N. E., Matsuoka, M., Loureiro, M. F. (2011). Biomassa e atividade microbiana de solo sob vegetação nativa e diferentes sistemas de manejos. Acta Scientiarum. Agronomy Maringá, 33(2): 341-347.

Aquino, A. M. (2001). Manual para macrofauna do solo. Seropédica: Embrapa Agrobiologia, 21p. (Embrapa-CNPAB. Documentos, 130).

Arias, A. R. L. et al. (2015). Utilização de bioindicadores na avaliação de impacto e no monitoramento da contaminação de rios e córregos por agrotóxicos. Enciclopédia Biosfera, 11(22): 61-72.

Baretta, D., Mafra, A. L., Santos, J. P. C., Amarante, C. V. T., Bertol, I. (2006). Análise multivariada da fauna edáfica em diferentes sistemas de preparo e cultivo do solo. Pesquisa Agropecuária Brasileira, 41(11): 1675-1679.

Baretta, D., Santos, J. P. C., Segat, J. C., Geremia, E. V., Oliveira, F. L. C. L., Alves, M. V. (2011). Tópicos em Ciências do solo: Fauna edáfica e qualidade do solo. Sociedade Brasileira de Ciência do Solo, 7: 141-192.

Birkhofer, K. et al. (2012). General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS ONE 7:e43292.

Brown, G. G., Maschio, W., Froufe, L. C. M. (2009). Macrofauna do solo em sistemas agroflorestais e Mata Atlântica em regeneração nos municípios de Barra do Turvo, SP, e Adrianópolis, PR. Documentos, 184. Embrapa Florestas.

Brussaard, L., De Ruiter, P. C, Brown, G. G. (2007). Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ. 121: 233–244.

Camara, R. et al. (2018a). Effects of natural Atlantic Forest regeneration on soil fauna, Brazil. Floresta e Ambiente, Seropédica, 25(1): e20160017.

Cézar, R. M. et al. (2015). Soil biological properties in multiestrata successional agroforestry systems and in natural regeneration. Agroforestry Systems, 89(6): 1035-1047.

Coyle, D. R. et al. (2017). Soil fauna responses to natural disturbances, invasive species, and global climate change: Current state of the science and a call to action. Soil Biology and Biochemistry, Oxford, 110: 116-133.

Correia, M. E. F., Oliveira, L. C. M. (2000). Fauna do solo: aspectos gerais e metodológicos. Documentos, 112. Embrapa Agrobiologia.

Cunha, F. V. et al. (2012). Soil fauna as an indicator of soil quality in forest stands, pasture and secondary forest. Rev. Bras. Ciênc. Solo, 36(5): 1407-1417, Nov. <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832012000500004&lng=en&nrm=iso>.http://dx.doi.org/10.1590/S0100-06832012000500004.

Oliveira, F. S., Varajao, A.F. D. C., Varajao, C. A. C., Schaefer, C. E. G. R., Boulange, B. (2014). The role of biological agents in the microstructural and mineralogical transformations in aluminium lateritic deposit in Central Brazil. Geoderma 226: 250–259.

Vries, F. T., Thebault, E., Liiri, M., Birkhofer, K., Tsiafouli, M. A., Bjornlund, L, et al. (2013). Soil food web properties explain ecosystem services across European land use systems. Proc. Natl. Acad. Sci. U. S. A. 110: 14296–14301.

Donagemma, G. K. et al. (2011). Manual de métodos de análises de solos. 2. ed. Rio de Janeiro, RJ: Embrapa Solos. 230 p. (Documentos/Embrapa Solos, 132).

Franco, A. L. C. et al. (2016). Loss of soil (macro)fauna due to the expansion of Brazilian sugarcane acreage. Science of the Total Environment, 563(564): 160–168.

Ferreira, C. R. et al. (2020). Dynamics of soil aggregation and organic carbon fractions over 23 years of no-till management. Soil & Tillage Research, Amsterdam, 198(1): 1-9.

Ferreira, C. R. et al. (2017). Edaphic arthropods in different successional stages of Atlantic forest and abandoned pasture areas. Comunicata Scientiae, Bom Jesus, 8(2): 296-306.

Frasson, J. M. F. et al. (2016). Litter decomposition of two pioneer tree species and associated soil fauna in areas reclaimed after surface coal mining in Southern Brazil. Revista Brasileira de Ciência do Solo, Viçosa, MG, 40: e0150444.

Instituto Brasileiro De Geografia e Estatística – IBGE. (2012). Manual técnico da vegetação brasileira, 2 Ed., Rio de Janeiro: Fundação Instituto Brasileiro de Geografia e Estatística. 271 p.

Heisler, C., Kaiser, E. A. (1995). Influence of agricultural traffic and crop management on Collembola andmicrobial biomass in arable soil. Biology and Fertility of Soils, 19(2/3)159-165.

Kruskal, J. B. & M. Wish. (1978). Multidimensinal Scaling.Sage Publicstions, Bevery Hills, California.93p.

Lavelle, P., Bignell, D. E., Lepage, M., Volters, V., Roger, P., Ineson, P., Heal, W., Dillion, S. (1997). Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology, 33(4): 159-193.

Leonard, J., Rajot, J. L. (2001). Influence of termites on runoff and infiltration: quantification and analysis. Geoderma 104: 17–40.

Li, Y., Dong, Z. Y., Pan, D. Z., Pan, C. H., Chen, L. H. (2017). E ect of termite on soil pH and its application for termite control in Zhejiang province, China. Sociobiology, 64: 317–326.

Lima, S. S., Aquino, A. M., Leite, L. F. C., Velasquez, E., Lavelle, P. (2010). Relação entre macrofauna edáfica e atributos químicos do solo, em diferentes agroecossistemas. Pesquisa Agropecuária Brasileira, 45: 322 - 331.

Lima, A. C. R. et al. (2013). A functional evaluation of three indicator sets for assessing soil quality. Applied Soil Ecology, Amsterdam, 64: 194-200.

Lu, S., Wang, F., Meng, P., Zhang, J. (2015). Simultaneously protecting the environment and its residents: The need to incorporate agroforestry principles into the ecological projects of China. Ecological Indicators, 57: 61-63.

Majeed, M. Z., Miambi, E., Barois, I., Randriamanantsoa, R., Blanchart, E., Brauman, A. (2014). Contribution of white grubs (Scarabaeidae: Coleoptera) to N2O emissions from tropical soils. Soil Biol. Biochem. 75: 37–44.

Martins, E. M., Silva, E. R., Campello, E. F. C., Lima, S. S., Nobre, C. P., Correia, M. E. F., Resende, A. S. (2019). O uso de sistemas agroflorestais diversificados na restauração florestal na Mata Atlântica. Ciência Florestal, 29(2): 632-648.

Melo, F. V., Brown, G. G., Constantino, R., Louzada, J. N. C., Luizão, F. J., Mortis, J. W., Zanetti, R. (2009). A importância da meso e macrofauna do solo na fertilidade e como bioindicadores. Boletim informativo do SBCS. Janeiro-Abril.

Miccolis, A. et al (2016). Restauração ecológica com sistemas agroflorestais: como conciliar conservação com produção: opções para Cerrado e Caatinga. Brasília: Centro Internacional de Pesquisa Agroflorestal, p.266.

Negassa, W., Sileshi, G. W. (2018). Integrated soil fertility management reduces termite damage to crops on degraded soils in western Ethiopia. Agric. Ecosyst. Environ, 251: 124–131.

Peneireiro, F. M. (1999). Sistemas agroflorestais dirigidos pela sucessão natural: um estudo de caso. Dissertação de mestrado. Piracicaba/USP/ESALQ.

Pereira, J. M.et al (2020). Fauna edáfica e suas relações com atributos químicos, físicos e microbiológicos em Floresta de Araucária. Ciência Florestal, 30: (1): 242-257

Odum, E. P. (1988). Ecologia. Rio de Janeiro: Guanabara, 434p.

R Development Core Team (2019). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

Santos, P. Z. F., Crouzeilles, R., Sansevero, J. B. B. (2019). Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A metaanalysis for the Brazilian Atlantic Forest. Forest Ecology and Management, 433: 140- 145.

Silva, E. A. S., Silva, C. A., Silva, I. R., Marques, J. J. G. S. M., Araujo, E. F., Carvalho, A. S., Silva, S. H. G., Curi, N. (2012). Frações de C em topossequencia de solos sob eucalipto com diferentes históricos de uso. Rev Bras Cienc Solo, 36:1167-78.

Souza, M. H., Vieira, B. C. R., Oliveira, A. P. G., Amaral, A. A. (2015). Macrofauna do Solo. Enciclopédia Biosfera, Centro Científico Conhecer - Goiânia, 11 (22).

Steenbock, W. et.al. (2013). Avaliação da dinâmica do carbono em agroflorestas desenvolvidas por agricultores associados à Coopera floresta. In: Agrofloresta, ecologia e sociedade, p 345-362. Curitiba: Kairós.

Velásquez, J., Tejera, R., Hernando, A., Núñes, M. V. (2010). Environmental diagnosis: integrating biodiversity conservation in management of Natura forest spaces. Journal for Nature Conservation, 18(4): 309-317.

Velásquez, E. et al. (2012). Soil macrofauna-mediated impacts of plant species composition on soil functioning in Amazonian pastures. Applied Soil Ecology, 56(1):43-50.

Vieira, D. L. M., Holl, K. D., Peneireiro, F. M. (2009). Agro-sucessional restoration as a strategy to facilitate tropical forest recovery. Restoration Ecology. 17(4): 451-459.

Wagg, C., Bender, S. F., Widmer, F., Van, Der. Heijden, M. G. A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. U. S. A, 111: 5266–5270.

Yeomans, J. C., Bremner, J. M. A. (1988). Rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, 19(13): 1467-1476. DOI: 10.1080/00103628809368027

Downloads

Published

20/08/2021

How to Cite

SILVA, R. M. da .; SILVA, R. M. da .; LIMA , S. S. de .; SOUZA, J. R. M. de .; SOUZA , J. K. M. de .; RIBEIRO, G. T. .; CHAER , G. . M. . Soil macrofauna as a bioindicator of soil quality in successional agroforestry systems. Research, Society and Development, [S. l.], v. 10, n. 10, p. e580101019144, 2021. DOI: 10.33448/rsd-v10i10.19144. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19144. Acesso em: 27 dec. 2024.

Issue

Section

Agrarian and Biological Sciences