Male Swiss mice (Mus musculus) as a most suitable experimental model for the study of Giardia duodenalis BIV
DOI:
https://doi.org/10.33448/rsd-v10i10.19250Keywords:
Balb/c; C57BL/6; Experimental model; Giardia duodenalis; Giardiasis.Abstract
In this study, we proposed to verify the most suitable murine experimental model for studying human giardiasis. In total 150 animals were used. Fifty mice (Mus musculus) from each lineage (Swiss, Balb/c and C57BL/6), 25 females and 25 males, were divided into 5 groups with 5 animals each, according to the lineage/sex. Three groups were infected with 104 cysts of Giardia duodenalis of assemblage BIV and 2 negative control groups. The animals were followed and evaluated for 15 days after receiving the inoculum. The clinical parameters evaluated were body weight, water and feed intake, excretion, appearance of fur and feces, elimination of Giardia spp cysts and behavioral assessment. The clinical parameters of the groups infected with G. duodenalis were compared with the non-infected groups within their own lineage/sex. In the 15 days of monitoring, only the male Swiss mice presented differences in these parameters. The infected animals consumed more feed, water and eliminated more excreta than the non-infected group. There was no difference in the general average of the weight of the animals or in the behavioral assessment in any group. Only the infected male Swiss mice eliminated G. duodenalis cysts in the feces, which was confirmed by the molecular diagnosis and by observing the presence of trophozoites in the intestinal mucosa. The results demonstrate that the most suitable animal model for the study of human giardiasis is the male Swiss mice, since it was the only one capable of developing infection by G. duodenalis cysts.
References
Almeida, C. R., Bezagio, R. C., Colli, C. M., Romera, L. I. L. & Gomes, M. L. (2021). Elimination of Giardia muris in naturally infected murine experimental model: Complementary treatment. Research, Society and Development, 10(7):e60010716996. https://doi.org/10.33448/rsd-v10i7.16996
Astiazarán-Garcia, H., Espinosa-Cantellano, M., Castañón, G., Chavéz-Munguía, B. & Martínez-Palomo, A. (2000). Giardia lamblia: effect of infection with symptomatic and asymptomatic isolates on growth of gerbils (Meriones unguiculatus). Experimental Parasitology, 95:128-135. https://doi.org/10.1006/expr.2000.4514
Baker, D. G. (2006). Parasitic diseases. In: Suckow MA, Weisbroth SH, Franklin CL (ed) The laboratory rat. Elsevier, 453-478.
Baker, J. M. & Alonso, W. J. (2018). Rotavirus vaccination takes seasonal signature of childhood diarrhea back to pre-sanitation era in Brazil. Journal of Infection, 76:68–77. https://doi.org/10.1016/j.jinf.2017.10.001
Baltert, L. A., Roche, J., Kolling, G., Bolick, D., Noronha, F., Naylor, C., Hoffman, P, Warren, C., Singer, S. & Guerrant, R. (2013). Persistent G. lamblia impairs growth in a murine malnutrition model. The Journal of Clinical Investigation, 123:2672–2684. https://doi.org/10.1172/JCI67294
Bezagio, R. C., Colli, C. M., Romera, L. I. L., Almeida, C. R., Ferreira, É. C., Mattia, S., & Gomes, M. L. (2020). Improvement in cyst recovery and molecular detection of Giardia duodenalis from stool samples. Molecular Biology Reports, 47(2), 1233–1239. https://doi.org/10.1007/s11033-019-05224-5
Bezagio, R. C., Colli, C. M., Romera, L. I. L., Ferreira, É. C., Falavigna-Guilherme, A. L. & Gomes, M. L. (2017). Synergistic effects of fenbendazole and metronidazole against Giardia muris in Swiss mice naturally infected. Parasitology Research, 116:939- 944. https://doi.org/ 10.1007/s00436-016-5367-9
Bicalho, K. A., Araujo, F. T. M., Rocha, R. S. & Carvalho, O. (2007). Perfil sanitário de colônias de camundongos e ratos de biotérios de Minas Gerais: I - Endo e ectoparasitos. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 59:1478-1484. https://doi.org/10.1590/S0102-09352007000600020
Buret, A., Gall, D. G. & Olson, M. E. (1991). Growth, activities of enzymes in the small intestines and ultrastructure of microvillous border in gerbils infected with Giardia duodenalis. Parasitology Research, 77:109-114. https://doi.org/10.1007/bf00935423
Cacciò, S. M. & Ryan, U. (2008). Molecular epidemiology of giardiasis. Molecular and Biochemical Parasitology, 160:75–80. https://doi.org/10.1016/j.molbiopara.2008.04.006
Chorilli, M., Michelin, D. C. & Salgado, H. R. N. (2007). Animais de laboratório: o camundongo. Revista de Ciências Farmacêuticas Básica e Aplicada, 28:1123. http://servbib.fcfar.unesp.br/seer/index.php/Cien_Farm/article/viewArticle/340
Cock, I. E. & Rayan, P. (2020). Ascorbic acid potentiates the Giardia duodenalis growth inhibitory activity of pure Terminalia ferdinandiana Exell compounds. Parasitology Research. https://doi.org/10.1007/s00436-019-06579-1
Colli, C. M., Bezagio, R. C., Nishi, L., Bignotto, T. S., Ferreira, É. C., Falavigna-Guilherme, A. L. & Gomes, M. L. (2015). Identical Assemblage of Giardia duodenalis in Humans, Animals and Vegetables in an Urban Area in Southern Brazil Indicates a Relationship among Them. Plos One, 10:e0118065. https://doi.org/10.1371/journal.pone.0118065
Dressen, L., Bosscher, K., Grit, G., Staels, B., Lubberts, E., Bauge, E. & Geldhof, P. (2014). Giardia muris infection in mice is associated with a protective interleukin 17A response and induction of peroxisome proliferator activated receptor alpha. Infection and Immunology, 82:3333-3340. https://doi.org/10.1128/IAI.01536-14
Ehret, T., Torelli, F., Klotz, C., Pedersen, A. B. & Seeber, F. (2017). Translational Rodent Models for Research on Parasitic Protozoa - A Review of Confounders and Possibilities. Frontiers in Cellular and Infection Microbiology, 7:238. https://doi.org/10.3389/fcimb.2017.00238
Fantinatti, M., Bello, A. R., Fernandes, O. & Da-Cruz, A. M. (2016). Identification of Giardia lamblia Assemblage E in Humans Points to a New Anthropozoonotic Cycle. Journal of Infectious Diseases, 214:1256–1259. https://doi.org/10.1093/infdis/jiw361
Faust, E. C., D´Antoni, J. S., Odom, V., Miller, M. J., Peres, C., Sawitz, W., Thomen, I. F., Tobie, J. & Walker, J. H. (1938). A critical study of clinical laboratory technics for the diagnosis of protozoan cysts and helminth eggs in feces. The American Journal of Tropical Medicine and Hygiene, 18:169-183. https://doi.org/10.4269/ajtmh.1938.s1-18.169
Feng, Y. & Xiao, L. (2011). Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clinical Microbiology Reviews, 24:110–140. https://doi.org/10.1128/CMR.00033-10
Guénet, J. L. (2011). Animal models of human genetic disesases: do they need to be faithful to be useful? Molecular Genetics and Genomics, 286:1-20. https://doi.org/10.1007/s00438-011-0627-y
Goyal, N., Rishi, P. & Shukla, G. (2013). Lactobacillus rhamnosus GG antagonizes Giardia intestinalis induced oxidative stress and intestinal disaccharidases: an experimental study. World Journal of Microbiology and Biotechnology, 29:1049-1057. https://doi.org/10.1007/s11274-013-1268-6
Hooshyar, H., Rostamkhani, P., Arbabi, M. & Delavari, M. (2019). Giardia lamblia infection: review of current diagnostic strategies. Gastroenterology and Hepatology from Bed to Bench, 12:3-12. https://doi.org/10.22037/ghfbb.v0i0.1414
Lasek-Nesselquist, E., Welch, D. M. & Sogin, M. L. (2010). The identification of a new Giardia duodenalis assemblage in marine vertebrates and a preliminar analysis of G. duodenalis population biology in marine system. International Journal for Parasitology, 40:1063–1074. https://doi.org/437 10.1016/j.ijpara.2010.02.015
Lebbad, M., Mattsson, J. G., Christensson, B., Ljungström, B., Backhans, A., Andersson, J. O. & Svärd, S. G. (2010). From mouse to moose: multilocus genotyping of Giardia isolates from various animal species. Veterinary Parasitology, 168:231–239. https://doi.org/10.1016/j.vetpar.2009.11.003
Lemée, V., Zaharia, I., Nevez, G., Rabodonirina, M., Brasseur, P., Ballet, J. J. & Favannec, L. (2000). Metronidazole and albendazole susceptibility of 11 clinical isolates of Giardia duodenalis from France. Journal of Antimicrobial Chemotherapy, 46:819–821. https://doi.org/10.1093/jac/46.5.819
Li, E., Liu, M. & Singer, S. M. (2014). Resistance to reinfection in mice as a vaccine model for giardiasis. Human Vaccines & Immunotherapeutics, 10:1536-1543. https://doi.org/10.4161/hv.29116
Lima, A. A. M., Oliveira, D. B., Quetz, J. S., Havt, A., Prata, M. M. G., Lima, I. F. N., Soares, A. M., Filho, J. Q., Lima, N. L., Medeiros, P. H. Q. S., Santos, A. K. S., Veras, H. N., Gondim, R. N. D. G., Pankov, R. C., Bona, M. D., Rodrigues, F. A. P., Moreira, R. A., Moreira, A. C. O. M., Bertolini, M., Bertolini, L. R., Freitas, V. J. F., Houpt, E. R. & Guerrant, R. L. (2019). Etiology and severity of diarrheal diseases in infants at the semiarid region of Brazil: A case-control study. PLoS Neglected Tropical Diseases, 13:e0007154. https://doi.org/10.1371/journal.pntd.0007154
Massironi, S. M. G. (2009). Padrão genético. In: Lapchik VBV, Mattaraia VGM, Ko GM (ed) Cuidados e Manejo de Animais de Laboratório, (2rd ed.) Editora Atheneu, 385 – 398.
Matsuchita, H. L. P., Pitz, A. F., Melanda, F. N., Bregano, R. M., Oliveira, F. J. A., Mori, F. M. R. L., Menezes, M. C. N. D., Costa, I. N., Pavanelli, W. R., Gomes, M. L., Colli, C. M., Venancio, E. J. & Conchon-Costa, I. (2017). Descriptive molecular epidemiology study of Giardia duodenalis in children of Parana State, Brazil. International Journal of Epidemiology Research, 4:1–9. http://ijer.skums.ac.ir/article_22927.html
Mayol, G. F., Revuelta, M. V., Salusso, A., Touz, M. C. & Rópolo, A. S. (2019). Evidence of nuclear transport mechanisms in the protozoan parasite Giardia lamblia. Biochimica et biophysica acta - Molecular Cell Research, 1867:118566. https://doi.org/10.1016/j.bbamcr.2019.118566
Mizutani, H., Tamagawa-Mineoka, R., Minami, Y., Yagita, K. & Katoh, N. (2017). Constant light exposure impairs immune tolerance development in mice. Journal of Dermatological Science, 86:63–70. https://doi.org/10.1016/j.jdermsci.2016.12.016
Monis, P. T., Andrews, R. H., Mayrhofer, G. & Ey, P. L. (1999). Molecular systematics of the parasitic protozoan Giardia intestinalis. Molecular Biology Evolution, 16:1135-1144. https://doi.org/10.1093/oxfordjournals.molbev.a026204
Nakada, L. Y. K., Franco, R. M. B., Fiuza, V. R. S., Santos, L. U., Branco, N. & Guimarães, J. R. (2018). Pre-ozonation of source water: assessment of efficacy against Giardia duodenalis cysts and effects on natural organic matter. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.09.164
Pavanelli, M. F., Colli, C. M., Gomes, M. L., Góis, M. B., Alcântara-Nogueira, G. M., Almeida-Araújo, E. J. & de Gonçales-Sant’Ana, D. M. (2018). Comparative study of effects of assemblages AII and BIV of Giardia duodenalis on mucosa and microbiota of the small intestine in mice. Biomedicine & Pharmacotherapy, 101:563–571. https://doi.org/doi:10.1016/j.biopha.2018.02.141
Qi, M., Ji, X., Zhang, Y., Wei, Z., Jing, B., Zhang, L., Lin, X., Karim, M. R., Wang, H. & Sun, M. (2020). Prevalence and multilocus analysis of Giardia duodenalis in racehorses in China. Parasitology Research. https://doi.org/doi:10.1007/s00436-019-06594-2
Scott, K. G. E., Logan, M. R., Klammer, G. M., Teoh, D. A. & Buret, A. G. (2000). Jejunal brush border microvillous alterations in Giardia muris - infected mice: role of T lymphocytes and interleukin-6. Infection and Immunity, 68:3412-3418. https://doi.org/ 10.1128/ iai.68.6.3412-3418.2000
Soares, J. F., Silva, A. S., Oliveira, C. B., Silva, M. K., Mariscano, G., Salomão, E. L. & Monteiro, S. G. (2008). Parasitismo por Giardia sp. e Cryptosporidium sp. em Coendou villosus. Ciência Rural, 38:548–550. https://doi.org/10.1590/s0103-84782008000200043
Solaymani-Mohammadi, S. & Singer, S. M. (2010). Giardia duodenalis: the double-edged sword of immune responses in Giardiasis. Experimental Parasitology, 126:292–297. https://doi.org/10.1016/j.exppara.2010.06.014
Strober, W. (2015). Trypan Blue Exclusion Test of Cell Viability. Current Protocols in Immunology. https://doi.org/10.1002/0471142735.ima03bs111
Thompson, R. C. A., Hopkins, R. M. & Homan, W. L. (2000). Nomenclature and genetic groupings of Giardia infecting mammals. Parasitology Today, 16:210-213. https://doi.org/10.1016/s0169-4758(99)01624-5
Uda-Shimoda, C. F., Colli, C. M., Pavanelli, M. F., Falavigna-Guilherme, A. L. & Gomes, M. L. (2014). Simplified protocol for DNA extraction and amplification of 2 molecular markers to detect and type Giardia duodenalis. Diagnostic Microbiology and Infectious Disease, 78(1):53-58. https://doi.org/10.1016/j.diagmicrobio.2013.09.008
Vaidya, H. B., Gangadaran, S. & Cheema, S. K. (2017). A high fat-high sucrose diet enriched in blue mussels protects against systemic inflammation, metabolic dysregulation and weight gain in C57BL/6 mice. Food Research International, 100:78–85. https://doi.org/10.1016/j.foodres.2017.08.033
Von-Allmen, N., Christen, S., Forster, U., Gottstein, B., Welle, M. & Muller, N. (2006). Acute trichinellosis increases susceptibility to Giardia lamblia infection in the mouse model. Parasitology, 133:139-149. https://doi.org/10.1017/S0031182006000230
Zhao, Z., Wang, R., Zhao, W., Qi, M., Zhao, J., Zhang, L., Li, J. & Liu, A. (2015). Genotyping and subtyping of Giardia and Cryptosporidium isolates from commensal rodents in China. Parasitology, 142:800–806. https://doi.org/10.1017/S0031182014001929
Ware, M. W. & Villegas, E. N. (2019). Propagation of Giardia duodenalis cysts in immunosuppressed CF-1 mice. Veterinary Parasitology, 268:32-35. https://doi.org/10.1016/j.vetpar.2019.02.010
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Liara Izabela Lopes Romera; Renata Coltro Bezagio; Willian Costa Ferreira; Caroline Rodrigues de Almeida; Mônica Lúcia Gomes
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.