Adición de suero de leche en polvo al yogur: efectos sobre el tamaño de partícula, la microestructura y la textura
DOI:
https://doi.org/10.33448/rsd-v10i11.19404Palabras clave:
Suero de leche; suero de leche; tamaño de partícula; fosfolípidos; fermentación.; Tamaño de partícula; suero de leche; tamaño de partícula; Fosfolípidos; fosfolípidos; Fermentación.; fermentaciónResumen
Se investigó la adición de suero de leche en polvo como sustituto de grasa parcial en formulaciones de yogur con materia seca constante. Se produjeron tres formulaciones de yogur que contenían 0% (T1), 1,36% p·p-1 (T2) y 3,34% p·p-1 (T3) de suero de leche en polvo en el producto final. El tamaño de las partículas y la variación del pH se controlaron durante la fermentación; Se realizaron microscopía electrónica de barrido y análisis del perfil de textura en el producto final. La muestra de control mostró un tamaño de partícula más grande el día después de la producción y al final de la fermentación, así como una microestructura de red más compacta con un tamaño de poro promedio más pequeño. En comparación con los prototipos con suero de leche añadido, la muestra de control mostró una mayor firmeza. El suero de leche en polvo podría actuar como sustituto graso del yogur pero favorece la formación de una microestructura de red menos compactada, con poros dilatados, menor elasticidad a los 21 días y menor dureza en los dos tiempos evaluados (21 y 42 días).
Citas
Aichinger, PA, Miche, M, Servais, C, Dillmann, ML, Rouvet, M, D’Amico, N, Zink, R, Klostermeyer, H & Horne, DS (2003). Fermentation of a skim milk concentrate with Streptococcus thermophilus and chymosin: Structure, viscoelasticity and syneresis of gels. Colloids and Surfaces B: Biointerfaces, 31(1-4), 243–255. https://doi.org/10.1016/S0927-7765(03)00144-9
Brasil, (2017) Ministério da Agricultura, Pecuária e Abastecimento Secretaria de Defesa Agropecuária. Ministério da Agricultura, Pecuária e Abastecimento, Brasília.
Ciron, CIE, Gee, VL, Kelly, AL & Auty, MAE (2010). Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. International Dairy Journal, 20(5), 314–320. https://doi.org/10.1016/j.idairyj.2009.11.018
Dewettinck, K, Rombaut, R, Thienpont, N, Le, TT, Messens, K & Van, CJ (2008). Nutritional and technological aspects of milk fat globule membrane material. International Dairy Journal, 18 (5), 436–457. https://doi.org/10.1016/j.idairyj.2007.10.014
Ferreira, D, Van Rensburg, H, Malan, E, Coetzee, J & Nel, RJJ (1999). Recent Advances in the Chemistry of Proanthocyanidins. In: Phytochemicals in Human Health Protection, Nutrition, and Plant Defense. Springer, Boston 255–288.
Fuller, KL, Kuhlenschmidt, TB, Kuhlenschmidt, MS, Jiménez-Flores, R & Donovan, SM (2013). Milk fat globule membrane isolated from buttermilk or whey cream and their lipid components inhibit infectivity of rotavirus in vitro. Journal of Dairy Science, 96(6), 3488–3497. https://doi.org/10.3168/jds.2012-6122
Govindasamy-Lucey, S, Lin, T, Jaeggi, JJ, Johnson, ME & Lucey, JA (2006). Influence of Condensed Sweet Cream Buttermilk on the Manufacture, Yield, and Functionality of Pizza Cheese. Journal of Dairy Science, 89(2), 454–467. https://doi.org/10.3168/jds.S0022-0302(06)72109-9
Hickey, CD, Diehl, BWK, Nuzzo, M, Millqvist-Feurby, A, Wilkinson, MG & Sheehan, JJ (2017). Influence of buttermilk powder or buttermilk addition on phospholipid content, chemical and bio-chemical composition and bacterial viability in Cheddar style-cheese. Food Research International, 102, 748–758. https://doi.org/ 10.1016 / j.foodres.2017.09.067
Hickey, CD, O’Sullivan, MG, Davis, J, Scholz, D, Kilcawley, KN, Wilkinson, MG & Sheehan, JJ (2018). The effect of buttermilk or buttermilk powder addition on functionality, textural, sensory and volatile characteristics of Cheddar-style cheese. Food Research International, 103, 468–477. https://doi.org/10.1016/j.foodres.2017.09.081
Jaya, S, (2009). Microstructure analysis of dried yogurt: Effect of different drying methods. International Journal of Food Properties, 12 (3), 469–481. https://doi.org/10.1080/1094291070177207
Kasinos, M, Tran Le, T & Van der, MP (2014). Improved heat stability of recombined evaporated milk emulsions upon addition of phospholipid enriched dairy by-products. Food Hydrocolloids, 34, 112–118. https://doi.org/10.1016/j.foodhyd.2012.11.030
Kristensen, A, Nylander, T, Paulsson, M & Carlsson, A (1997). Calorimetric studies of interactions between β-lactoglobulin and phospholipids in solutions. International Dairy Journal, 7(1), 87–92. https://doi.org/10.1016/S0958-6946(96)00038-6
Le, TT, Van Camp, J, Pascual, PAL, Meesen, G, Thienpont, N, Messens, K & Dewettinck, K (2011). Physical properties and microstructure of yoghurt enriched with milk fat globule membrane material. International Dairy Journal, 21(10), 798–805. https://doi.org/10.1016/j.idairyj.2011.04.015
Lucey, JA, (2002) Formation and Physical Properties of Milk Protein Gels. Journal of Dairy Science, 85(2), 281–294. https://doi.org/10.3168/jds.S0022-0302(02)74078-2
Morin, P, Pouliot, Y & Britten, M (2008). Effect of Buttermilk Made from Creams with Different Heat Treatment Histories on Properties of Rennet Gels and Model Cheeses. Journal of Dairy Science, 91(3), 871–882. https://doi.org/10.3168/jds.2007-0658
Morin, P, Pouliot, Y & Jiménez-Flores, R (2006). A comparative study of the fractionation of regular buttermilk and whey buttermilk by microfiltration. Journal of Food Engineering, 77(3), 521–528. https://doi.org/10.1016/j.jfoodeng.2005.06.065
Mudgil, P, Jumah, B, Ahmad, M, Hamed, F & Maqsood, S (2018). Rheological, micro-structural and sensorial properties of camel milk yogurt as influenced by gelatin. LWT - Food Science and Technology, 98, 646–653. https://doi.org/10.1016/j.lwt.2018.09.008
Mudgil, D, Barak, S, Khatkar, BS (2017). Texture profile analysis of yogurt as influenced by partially hydrolyzed guar gum and process variables. Journal Food Science Technology, 54(12), 3810-3817. https://doi.org/ 10.1007 / s13197-017-2779-1
Munck, AV, Wolfschoon-Pombo, AF & Neves, RS (1983). Dulce de Suero de Mantequilla. Industrias Lacteas, 34, 22–26.
Obeid, S, Guyomarc’h, F, Tanguy, G, Leconte, N, Rousseau, F, Dolivet, A, Leduc, A Wu, X, Couty, C, Jan, G, Gaucheron, F, Lopez, C (2020). The adhsion of homogenized fat globules to proteins is increased by milk heat treatment and acidic pH: Quantitative insights provides by AFM force spectroscopy. Food Research International, 129, 1-13. https://doi.org/10.1016/j.foodres.2019.108847
Roesch, RR, Rincon, A & Corredig, M (2004). Emulsifying Properties of Fractions Prepared from Commercial Buttermilk by Microfiltration. Journal of Dairy Science, 87(12), 4080–4087. https://doi.org/10.3168/jds.S0022-0302(04)73550-X
Romeih, EA, Hamid, AM, Awad, AA (2014). The addition of buttermilk power and transglutaminase improves textural and organoleptic properties of fat-free buffalo yogurt. Dairy Science & Technology, 94(3), 297-309. https://doi.org/ 10.1007 / s13594-014-0163-8
Sandoval-Castilla, O, Lobato-Calleros, C, Aguirre-Mandujano, E, Verno-Carter, EJ (2004). Microstructure and texture of yogurt as influenced by fat replacers. International Dairy Journal, 14(2), 151–159. https://doi.org/10.1016/S0958-6946(03)00166-3
Saffon, M, Jiménez-Flores, R, Britten, M & Pouliot, Y (2014). On the use of buttermilk components as aggregation nuclei during the heat-induced denaturation of whey proteins. Journal of Food Engineering, 132, 21–28. https://doi.org/10.1016 / j.jfoodeng.2014.02.001
Saffon, M, Richard, V, Jiménez-Flores, R, Gauthier, SF, Britten, M, Pouliot, Y (2013). Behavior of Heat-Denatured Whey:Buttermilk Protein Aggregates during the Yogurt-Marking Process and Their Influence on Set-Type Yogurt Properties. Foods, 2(4), 444-459. https://doi.org/10.3390 / foods2040444
Scalbert, A, Manach, C, Morand, C, Rémésy, C & Jiménez, L (2005). Dietary Polyphenols and the Prevention of Diseases. Critical Reviews in Food Science and Nutrition, 45(4), 287–306. https://doi.org/10.1080 / 1040869059096
Spitsberg, VL, (2005) Invited Review: Bovine Milk Fat Globule Membrane as a Potential Nutraceutical. Journal of Dairy Science, 88(7), 2289–2294. https://doi.org/10.3168/jds.S0022-0302(05)72906-4
Sprong, R, Hulstein, MF & Van der Meer, R (2002). Bovine milk fat components inhibit food-borne pathogens. International Dairy Journal, 12(1-3), 209–215. https://doi.org/10.1016/S0958-6946(01)00139-X
Tamime, AY, (2006). Fermented milks (1 ed.). Blackwell Science/SDT, Oxford, UK.
Tamime, AY & Robinson, RK (2003). Yoghurt Science and Technology (3th ed). New York.
Torres, IC, Amigo, JM, Knudsen, JC, Tolkach, A, Mikkelsen, BO & Ipsen, R (2018). Rheology and microstructure of low-fat yoghurt produced with whey protein microparticles as fat replacer. International Dairy Journal, 81, 62–71. https://doi.org/10.1016/j.idairyj.2018.01.004
Trachoo, N & Mistry, VV (1998). Application of Ultrafiltered Sweet Buttermilk and Sweet Buttermilk Powder in the Manufacture of Nonfat and Low Fat Yogurts. Journal of Dairy Science, 81(12), 3163–3171. https://doi.org/10.3168/jds.S0022-0302(98)75882-5
Vanderghem, C, Bodson, P, Danthine, S, Paquot, M, Deroanne, C & Blecker, C (2010). Milk fat globule membrane and buttermilks: from composition to valorization Biotechnol. Biotechonology, Agronomy, Society and Environment, 14(3), 485-500. Registration number: 20103309796
Ward, RE, German, JB & Corredig, M (2009). Composition, Applications, Fractionation, Technological and Nutritional Significance of Milk Fat Globule Membrane Material. In: Advanced Dairy Chemistry, Springer US, Boston.
Xu, ZM, Emmanouelidou, DG, Raphaelides, SN & Antoniou, KD (2008). Effects of heating temperature and fat content on the structure development of set yogurt. Journal of Food Engineering, 85(4), 590–597. https://doi.org/10.1016/j.jfoodeng.2007.08.021
Ye, A, Singh, H, James, Oldfield, D & Anema, S (2004). Kinetics of heat-induced association of β-lactoglobulin and α-lactalbumin with milk fat globule membrane in whole milk. International Dairy Journal, 14(5), 389–398. https://doi.org/ 10.1016 / j.idairyj.2003.09.004
Zhao, L, Feng, R, Ren, F & Mao, X (2018). Addition of buttermilk improves the flavor and volatile compound profiles of low-fat yogurt. LWT - Food Science and Technology, 98, 9–17. https://doi.org/10.1016/j.lwt.2018.08.029
Zhao, L, Feng, R, & Mao, X (2020). Addtion of buttermilk power improved th rheological and storage properties of low-fat yogurt. Food Science & Nutrition, 8(7), 3061-3069. https://doi.org/10.1002/fsn3.1373
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Elisângela Ramieres Gomes; Mariana Braga de Oliveira; Isis Rodrigues Toledo Renhe; Rodrigo Stephani; Antônio Fernandes de Carvalho; Alisson Borges de Souza; Ítalo Tuler Perrone ; Alan Frederick Wolfschoon Pombo

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.