Adição de leitelho em pó ao iogurte: efeitos no tamanho de partículas, microestrutura e textura
DOI:
https://doi.org/10.33448/rsd-v10i11.19404Palavras-chave:
leitelho; tamanho da partícula; fosfolipídios; fermentação.; Leitelho; leitelho; Tamanho da partícula; Fosfolipídios; tamanho de partícula; fosfolipídios; Fermentação.; fermentaçãoResumo
A adição de leitelho em pó como substituto parcial da gordura em formulações de iogurte com matéria seca constante foi investigada. Foram produzidas três formulações de iogurte contendo 0% (T1), 1,36% p·p-1 (T2) e 3,34% p·p-1 (T3) de leitelho em pó no produto final. O tamanho das partículas e a variação do pH foram monitorados durante a fermentação; microscopia eletrônica de varredura e análise do perfil de textura foram realizadas no produto final. A amostra controle apresentou maior tamanho de partícula no dia seguinte à produção e no final da fermentação, bem como uma microestrutura de rede mais compacta com menor tamanho médio de poro. Em comparação com os protótipos com leitelho adicionado, a amostra de controle apresentou maior firmeza. O leitelho em pó pode atuar como substituto da gordura do iogurte, mas favorece a formação de uma microestrutura de rede menos compactada, com poros dilatados, menor elasticidade após 21 dias e menor dureza nos dois tempos avaliados (21 e 42 dias).
Referências
Aichinger, PA, Miche, M, Servais, C, Dillmann, ML, Rouvet, M, D’Amico, N, Zink, R, Klostermeyer, H & Horne, DS (2003). Fermentation of a skim milk concentrate with Streptococcus thermophilus and chymosin: Structure, viscoelasticity and syneresis of gels. Colloids and Surfaces B: Biointerfaces, 31(1-4), 243–255. https://doi.org/10.1016/S0927-7765(03)00144-9
Brasil, (2017) Ministério da Agricultura, Pecuária e Abastecimento Secretaria de Defesa Agropecuária. Ministério da Agricultura, Pecuária e Abastecimento, Brasília.
Ciron, CIE, Gee, VL, Kelly, AL & Auty, MAE (2010). Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. International Dairy Journal, 20(5), 314–320. https://doi.org/10.1016/j.idairyj.2009.11.018
Dewettinck, K, Rombaut, R, Thienpont, N, Le, TT, Messens, K & Van, CJ (2008). Nutritional and technological aspects of milk fat globule membrane material. International Dairy Journal, 18 (5), 436–457. https://doi.org/10.1016/j.idairyj.2007.10.014
Ferreira, D, Van Rensburg, H, Malan, E, Coetzee, J & Nel, RJJ (1999). Recent Advances in the Chemistry of Proanthocyanidins. In: Phytochemicals in Human Health Protection, Nutrition, and Plant Defense. Springer, Boston 255–288.
Fuller, KL, Kuhlenschmidt, TB, Kuhlenschmidt, MS, Jiménez-Flores, R & Donovan, SM (2013). Milk fat globule membrane isolated from buttermilk or whey cream and their lipid components inhibit infectivity of rotavirus in vitro. Journal of Dairy Science, 96(6), 3488–3497. https://doi.org/10.3168/jds.2012-6122
Govindasamy-Lucey, S, Lin, T, Jaeggi, JJ, Johnson, ME & Lucey, JA (2006). Influence of Condensed Sweet Cream Buttermilk on the Manufacture, Yield, and Functionality of Pizza Cheese. Journal of Dairy Science, 89(2), 454–467. https://doi.org/10.3168/jds.S0022-0302(06)72109-9
Hickey, CD, Diehl, BWK, Nuzzo, M, Millqvist-Feurby, A, Wilkinson, MG & Sheehan, JJ (2017). Influence of buttermilk powder or buttermilk addition on phospholipid content, chemical and bio-chemical composition and bacterial viability in Cheddar style-cheese. Food Research International, 102, 748–758. https://doi.org/ 10.1016 / j.foodres.2017.09.067
Hickey, CD, O’Sullivan, MG, Davis, J, Scholz, D, Kilcawley, KN, Wilkinson, MG & Sheehan, JJ (2018). The effect of buttermilk or buttermilk powder addition on functionality, textural, sensory and volatile characteristics of Cheddar-style cheese. Food Research International, 103, 468–477. https://doi.org/10.1016/j.foodres.2017.09.081
Jaya, S, (2009). Microstructure analysis of dried yogurt: Effect of different drying methods. International Journal of Food Properties, 12 (3), 469–481. https://doi.org/10.1080/1094291070177207
Kasinos, M, Tran Le, T & Van der, MP (2014). Improved heat stability of recombined evaporated milk emulsions upon addition of phospholipid enriched dairy by-products. Food Hydrocolloids, 34, 112–118. https://doi.org/10.1016/j.foodhyd.2012.11.030
Kristensen, A, Nylander, T, Paulsson, M & Carlsson, A (1997). Calorimetric studies of interactions between β-lactoglobulin and phospholipids in solutions. International Dairy Journal, 7(1), 87–92. https://doi.org/10.1016/S0958-6946(96)00038-6
Le, TT, Van Camp, J, Pascual, PAL, Meesen, G, Thienpont, N, Messens, K & Dewettinck, K (2011). Physical properties and microstructure of yoghurt enriched with milk fat globule membrane material. International Dairy Journal, 21(10), 798–805. https://doi.org/10.1016/j.idairyj.2011.04.015
Lucey, JA, (2002) Formation and Physical Properties of Milk Protein Gels. Journal of Dairy Science, 85(2), 281–294. https://doi.org/10.3168/jds.S0022-0302(02)74078-2
Morin, P, Pouliot, Y & Britten, M (2008). Effect of Buttermilk Made from Creams with Different Heat Treatment Histories on Properties of Rennet Gels and Model Cheeses. Journal of Dairy Science, 91(3), 871–882. https://doi.org/10.3168/jds.2007-0658
Morin, P, Pouliot, Y & Jiménez-Flores, R (2006). A comparative study of the fractionation of regular buttermilk and whey buttermilk by microfiltration. Journal of Food Engineering, 77(3), 521–528. https://doi.org/10.1016/j.jfoodeng.2005.06.065
Mudgil, P, Jumah, B, Ahmad, M, Hamed, F & Maqsood, S (2018). Rheological, micro-structural and sensorial properties of camel milk yogurt as influenced by gelatin. LWT - Food Science and Technology, 98, 646–653. https://doi.org/10.1016/j.lwt.2018.09.008
Mudgil, D, Barak, S, Khatkar, BS (2017). Texture profile analysis of yogurt as influenced by partially hydrolyzed guar gum and process variables. Journal Food Science Technology, 54(12), 3810-3817. https://doi.org/ 10.1007 / s13197-017-2779-1
Munck, AV, Wolfschoon-Pombo, AF & Neves, RS (1983). Dulce de Suero de Mantequilla. Industrias Lacteas, 34, 22–26.
Obeid, S, Guyomarc’h, F, Tanguy, G, Leconte, N, Rousseau, F, Dolivet, A, Leduc, A Wu, X, Couty, C, Jan, G, Gaucheron, F, Lopez, C (2020). The adhsion of homogenized fat globules to proteins is increased by milk heat treatment and acidic pH: Quantitative insights provides by AFM force spectroscopy. Food Research International, 129, 1-13. https://doi.org/10.1016/j.foodres.2019.108847
Roesch, RR, Rincon, A & Corredig, M (2004). Emulsifying Properties of Fractions Prepared from Commercial Buttermilk by Microfiltration. Journal of Dairy Science, 87(12), 4080–4087. https://doi.org/10.3168/jds.S0022-0302(04)73550-X
Romeih, EA, Hamid, AM, Awad, AA (2014). The addition of buttermilk power and transglutaminase improves textural and organoleptic properties of fat-free buffalo yogurt. Dairy Science & Technology, 94(3), 297-309. https://doi.org/ 10.1007 / s13594-014-0163-8
Sandoval-Castilla, O, Lobato-Calleros, C, Aguirre-Mandujano, E, Verno-Carter, EJ (2004). Microstructure and texture of yogurt as influenced by fat replacers. International Dairy Journal, 14(2), 151–159. https://doi.org/10.1016/S0958-6946(03)00166-3
Saffon, M, Jiménez-Flores, R, Britten, M & Pouliot, Y (2014). On the use of buttermilk components as aggregation nuclei during the heat-induced denaturation of whey proteins. Journal of Food Engineering, 132, 21–28. https://doi.org/10.1016 / j.jfoodeng.2014.02.001
Saffon, M, Richard, V, Jiménez-Flores, R, Gauthier, SF, Britten, M, Pouliot, Y (2013). Behavior of Heat-Denatured Whey:Buttermilk Protein Aggregates during the Yogurt-Marking Process and Their Influence on Set-Type Yogurt Properties. Foods, 2(4), 444-459. https://doi.org/10.3390 / foods2040444
Scalbert, A, Manach, C, Morand, C, Rémésy, C & Jiménez, L (2005). Dietary Polyphenols and the Prevention of Diseases. Critical Reviews in Food Science and Nutrition, 45(4), 287–306. https://doi.org/10.1080 / 1040869059096
Spitsberg, VL, (2005) Invited Review: Bovine Milk Fat Globule Membrane as a Potential Nutraceutical. Journal of Dairy Science, 88(7), 2289–2294. https://doi.org/10.3168/jds.S0022-0302(05)72906-4
Sprong, R, Hulstein, MF & Van der Meer, R (2002). Bovine milk fat components inhibit food-borne pathogens. International Dairy Journal, 12(1-3), 209–215. https://doi.org/10.1016/S0958-6946(01)00139-X
Tamime, AY, (2006). Fermented milks (1 ed.). Blackwell Science/SDT, Oxford, UK.
Tamime, AY & Robinson, RK (2003). Yoghurt Science and Technology (3th ed). New York.
Torres, IC, Amigo, JM, Knudsen, JC, Tolkach, A, Mikkelsen, BO & Ipsen, R (2018). Rheology and microstructure of low-fat yoghurt produced with whey protein microparticles as fat replacer. International Dairy Journal, 81, 62–71. https://doi.org/10.1016/j.idairyj.2018.01.004
Trachoo, N & Mistry, VV (1998). Application of Ultrafiltered Sweet Buttermilk and Sweet Buttermilk Powder in the Manufacture of Nonfat and Low Fat Yogurts. Journal of Dairy Science, 81(12), 3163–3171. https://doi.org/10.3168/jds.S0022-0302(98)75882-5
Vanderghem, C, Bodson, P, Danthine, S, Paquot, M, Deroanne, C & Blecker, C (2010). Milk fat globule membrane and buttermilks: from composition to valorization Biotechnol. Biotechonology, Agronomy, Society and Environment, 14(3), 485-500. Registration number: 20103309796
Ward, RE, German, JB & Corredig, M (2009). Composition, Applications, Fractionation, Technological and Nutritional Significance of Milk Fat Globule Membrane Material. In: Advanced Dairy Chemistry, Springer US, Boston.
Xu, ZM, Emmanouelidou, DG, Raphaelides, SN & Antoniou, KD (2008). Effects of heating temperature and fat content on the structure development of set yogurt. Journal of Food Engineering, 85(4), 590–597. https://doi.org/10.1016/j.jfoodeng.2007.08.021
Ye, A, Singh, H, James, Oldfield, D & Anema, S (2004). Kinetics of heat-induced association of β-lactoglobulin and α-lactalbumin with milk fat globule membrane in whole milk. International Dairy Journal, 14(5), 389–398. https://doi.org/ 10.1016 / j.idairyj.2003.09.004
Zhao, L, Feng, R, Ren, F & Mao, X (2018). Addition of buttermilk improves the flavor and volatile compound profiles of low-fat yogurt. LWT - Food Science and Technology, 98, 9–17. https://doi.org/10.1016/j.lwt.2018.08.029
Zhao, L, Feng, R, & Mao, X (2020). Addtion of buttermilk power improved th rheological and storage properties of low-fat yogurt. Food Science & Nutrition, 8(7), 3061-3069. https://doi.org/10.1002/fsn3.1373
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Elisângela Ramieres Gomes; Mariana Braga de Oliveira; Isis Rodrigues Toledo Renhe; Rodrigo Stephani; Antônio Fernandes de Carvalho; Alisson Borges de Souza; Ítalo Tuler Perrone ; Alan Frederick Wolfschoon Pombo

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.