Contributions of reverse engineering and 3D models production for medical education

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19692

Keywords:

Medical Education; Three-dimensional Printing; Computer-aided design.

Abstract

The use of 3D printers in medical practice has increased, being an innovation that positively helps the teaching-learning process involving visual and kinesthetic learning. The present study describes the use of reverse engineering in the production of 3D models and its applicability in the medical teaching-learning context. This is an integrative literature review carried out from searches in the PubMed, LILACS, SciELO and Academic Google databases, using the descriptors “Medical Education”, “Tridimensional Printing” and “Computer-Aided Design”. Reverse engineering makes it possible to obtain CAD (computer aided design) models of objects from image exam data, resulting in a highly detailed technical drawing, and in highly realistic 3D printer printed parts. 3D parts can be used in the study of human anatomy, in clinical and surgical cases. The applicability of these models is already observed around the world and in Brazil. The parts allow a better understanding of complex anatomical points, diseases, and their relationship with the treatment, in addition to anatomical variations. In the context of medical teaching-learning, reverse engineering can be inserted in practical classes, so that the student can manipulate the image exams and reproduce the pieces in 3D and digital resources, increasingly inserted in the globalized world. Therefore, there is a great growth opportunity for the medical school that makes use of 3D parts, having as great allies the low cost and high anatomical precision of reverse engineering printing.

Author Biographies

Maria Clara Emos de Araujo, Universidade Evangélica de Goiás

Student of Medicine, Voluntary Institutional Program for Initiation in Technological Development and Innovation (IDT&I), UniEVANGÉLICA Universidade Evangélica de Goiás, Anápolis – GO, Brazil.

Marcelo Mota de Souza Duarte, Universidade Evangélica de Goiás

Student of Medicine, Voluntary Institutional Program for Initiation in Technological Development and Innovation (IDT&I), UniEVANGÉLICA Universidade Evangélica de Goiás, Anápolis – GO, Brazil.

Lucas da Mota Louredo, Universidade Evangélica de Goiás

Student of Medicine, Voluntary Institutional Program for Initiation in Technological Development and Innovation (IDT&I), UniEVANGÉLICA Universidade Evangélica de Goiás, Anápolis – GO, Brazil.

Jalsi Tacon Arruda, Universidade Evangélica de Goiás

Morphofunctional Department – ​​Medicine Course, Coordinator of the Research Group on Preventive Medicine and Quality of Life, UniEVANGÉLICA Universidade Evangélica de Goiás, Anápolis – GO, Brazil.

References

Abouhashiem, Y., Dayal, M., Savanah, S., & Strkalj, G. (2015). The application of 3D printing in anatomy education. Medical Education Online, 20(29847), 1-3. https://doi.org/10.3402/meo.v20.29847.

Araújo, M. C. E., Louredo, L. M., Duarte, M. M. S., Moreira, S. M., Sugita, D. M., & Arruda, J. T. (2019). Uso da engenharia reversa e tecnologia 3D para produção de biomodelos a partir de exames de imagem reais. ANAIS I CAMEG., RESU – Revista Educação em Saúde, 7, suplemento 3.

Awadh, A. B., Clark, J., Clowry, G., & Keenan, I. D. (2020). Multimodal Three-Dimensional Visualization Enhances Novice Learner Interpretation of Basic Cross-Sectional Anatomy. Anatomical sciences education, 10.1002/ase.2045. Advance online publication. https://doi.org/10.1002/ase.2045.

Balestrini, C., & Campo-Celaya, T. (2016). With the advent of domestic 3-dimensional (3D) printers and their associated reduced cost, is it now time for every medical school to have their own 3D printer? Medical Teacher, 38(3), 312-313. https://doi.org/10.3109/0142159X.2015.1060305.

Bartikian, M., Ferreira, A. Gonçalves-Ferreira, A. & Neto, L. L. (2019). 3D printing anatomical models of head bones. Surgical and Radiologic Anatomy, 41(10), 1205-1209. https://doi.org/10.1007/s00276-018-2148-4.

Bettega, A. L., Brunello, L. F. S., Nazar, G. A., De-Luca, G. Y. E., Sarquis, L. M., Wiederkehr, H. A., Foggiatto, J. A. & Pimentel, S. K. (2011). Simulador de dreno de tórax: desenvolvimento de modelo de baixo custo para capacitação de médicos e estudantes de medicina. Revista do Colégio Brasileiro de Cirurgiões, 46(1), 1-8. https://doi.org/10.1590/0100-6991e-20192011.

Chantarapanich, N., Rojanasthien, S., Chernchujit, B., Mahaisavariya, B., Karunratanakul, K., Chalermkarnnon, P., Glunrawd, C., & Sitthiseripratip, K. (2017). 3D CAD/reverse engineering technique for assessment of Thai morphology: Proximal femur and acetabulum. Journal of Orthopaedic Science, 22(1), 703-709. https://doi.org/10.1016/j.jos.2017.02.003.

Chen, Y., Qian, C., Shen, R., Wu, D., Bian, L., Qu, H., Fan, X., Liu, Z., Li, Y., & Xia, J. (2020). 3D Printing Technology Improves Medical Interns' Understanding of Anatomy of Gastrocolic Trunk. Journal of surgical education, 77(5), 1279–1284. https://doi.org/10.1016/j.jsurg.2020.02.031.

Cramer, J., Quigley, E., Hutchins, T., & Shah, L. (2017). Educational Material for 3D Visualization of Spine Procedures: Methods for Creation and Dissemination. Journal of digital imaging, 30(3), 296–300. https://doi.org/10.1007/s10278-017-9950-0

Duarte, M. M. S., Araújo, M. C. E., Louredo, L. M., Moreira, S. M., Sugita, D. M., & Arruda, J. T. (2019). Fotogrametria e impressão 3D aplicada ao ensino de anatomia. ANAIS I CAMEG., RESU – Revista Educação em Saúde, 7, suplemento 3.

Duarte, M. M. S., Araujo, M. C. E., Louredo, L. M., Louredo, J. M., & Arruda, J. T. (2021). Aplicabilidades da técnica de fotogrametria no ensino de Anatomia Humana. Research, Society and Development, 10(11), e51101119328. https://doi.org/10.33448/rsd-v10i11.19328

Erolin C. (2019). Interactive 3D Digital Models for Anatomy and Medical Education. Advances in experimental medicine and biology, 1138, 1–16. https://doi.org/10.1007/978-3-030-14227-8_1.

Ganguli, A., Pagan-Diaz, G. J., Grant, L., Cvetkovic, C., Bramlet, M., Vozenilek, J., Kesavadas, T., & Bashir, R. (2018). 3D printing for preoperative planning and surgical training: a review. Biomedical microdevices, 20(3), 65. https://doi.org/10.1007/s10544-018-0301-9.

Garcia, J., Yang, Z., Mongrain, R., Leask, R. L., & Lachapelle, K. (2018). 3D printing materials and their use in medical education: a review of current technology and trends for the future. BMJ Simulation & Technology Enhanced Learning, 4(1), 24-40. https://doi.org/10.1136/bmjstel-2017-000234.

Hecht-López, P., & Larrazábal-Miranda, A. (2018). Uso de Nuevos Recursos Tecnológicos en la Docencia de un Curso de Anatomía con Orientación Clínica para Estudiantes de Medicina. International Journal of Morphology, 36(3), 821-828. https://dx.doi.org/10.4067/S0717-95022018000300821.

Hermsen, J. L., Roldan-Alzate, A., & Anagnostopoulos, P. V. (2020). Three-dimensional printing in congenital heart disease. Journal of thoracic disease, 12(3), 1194–1203. https://doi.org/10.21037/jtd.2019.10.38.

Knoedler, M., Feibus, A. H., Lange, A., Maddox, M. M., Ledet, E., Thomas, R., & Silberstein, J. L. (2015). Individualized Physical 3-dimensional Kidney Tumor Models Constructed From 3-dimensional Printers Result in Improved Trainee Anatomic Understanding. Urology, 85(6), 1257-1261. https://doi.org/10.1016/j.urology.2015.02.053.

Leary, O. P., Crozier, J., Liu, D. D., Niu, T., Pertsch, N. J., Camara-Quintana, J. Q., Svokos, K. A., Syed, S., Telfeian, A. E., Oyelese, A. A., Woo, A. S., Gokaslan, Z. L., & Fridley, J. S. (2021). Three-Dimensional Printed Anatomic Modeling for Surgical Planning and Real-Time Operative Guidance in Complex Primary Spinal Column Tumors: Single-Center Experience and Case Series. World neurosurgery, 145, e116–e126. https://doi.org/10.1016/j.wneu.2020.09.145.

Lim, K. H., Loo, Z. Y., Goldie, S. J., Adams, J. W., & McMenamin, P. G. (2016). Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anatomical sciences education, 9(3), 213–221. https://doi.org/10.1002/ase.1573.

Lioufas, P. A., Leong, J. C., & McMenamin, P. G. (2016). 3D Printed Models of Cleft Palate Pathology for Surgical Education. Plastic and Reconstructive Surgery - Global Open, 4(9), 1-6. https://doi.org/10.1097/GOX.0000000000001029.

Loke, T., Krieger, A., Sable, C., & Olivieri, L. (2016). Novel Uses for Three-Dimensional Printing in Congenital Heart Disease. Current Pediatrics Reports, 4(28), 28-34. https://doi.org/10.1007/s40124-016-0099-.

Louredo, L. M, Duarte, M. M. S., Araújo, M. C. E., Moreira, S. M., Sugita, D. M., & Arruda, J. T. (2019). Aplicabilidade de biomodelos tridimensionais produzidos com impressora 3d para estudos de anatomia. RESU – Revista Educação em Saúde: V7, suplemento 3. Recuperado de: http://periodicos.unievangelica.edu.br/index.php/educacaoemsaude/article/view/4187/3102

Lozano, M. T. U., Haro, F. B., Diaz, C. M., Manzoor, S., Ugidos, G. F., & Mendez, J. A. J. (2017). 3D Digitization and Prototyping of the Skull for Practical Use in the Teaching of Human Anatomy. Journal of Medical Systems, 41(83), 1-5. https://doi.org/10.1007/s10916-017-0728-1.

Lugassy, D., Levanon, Y., Rosen, G., Livne, S., Fridenberg, N., Pilo, R., & Brosh, T. (2020). Does Augmented Visual Feedback from Novel, Multicolored, Three-Dimensional-Printed Teeth Affect Dental Students' Acquisition of Manual Skills?. Anatomical sciences education, 10.1002/ase.2014. Advance online publication. ttps://doi.org/10.1002/ase.2014.

Macko, M., Mikołajewska, E., Szczepański, Z., Augustyńska, B., & Mikołajewski, D. (2016). Repository of images for reverse engineering and medical simulation purposes. Medical and Biological Sciences, 30(3), 23-29. DOI:10.12775/MBS.2016.020.

Matozinhos, I. P., Madureira, A. A. C., Silva, G. F., Madeira, G. C. C., Oliveira, I. F. A., Corrêa, C. R. (2017). Impressão 3D: inovações no campo da medicina. Revista Interdisciplinar Ciências Médicas – MG, 1(1), 143-162.

McMenamin, P. G., Quayle, M. R., McHenry, C. R., & Adams, J. W. (2014). The production of anatomical teaching resources using three-dimensional (3D) printing technology. Anatomical sciences education, 7(6), 479–486. https://doi.org/10.1002/ase.1475.

Mendonça, C. R., Souza, K. T. O., Arruda, J. T., Noll, M., & Guimarães, N. N. (2021), Human Anatomy: Teaching–Learning Experience of a Support Teacher and a Student with Low Vision and Blindness. Anatomical sciences education, 10.1002/ase.2058. https://doi.org/10.1002/ase.2058.

Miljanovic, D., Seyedmahmoudian, M., Stojcevski, A., & Horan, B. (2020). Design and Fabrication of Implants for Mandibular and Craniofacial Defects Using Different Medical-Additive Manufacturing Technologies: A Review. Annals of biomedical engineering, 48(9), 2285–2300. https://doi.org/10.1007/s10439-020-02567-0.

Moraes, S. G., & Muniz, A. de L. (2018). Utilização de modelos 3D como recurso didático no ensino de embriologia do sistema nervoso central. Revista Da Faculdade De Ciências Médicas De Sorocaba, 20(Supl.). 35º Congresso da SUMEP. Recuperado de https://revistas.pucsp.br/index.php/RFCMS/article/view/40101.

Neto, J. S., Barbosa, M. L. L., Matos, H. L., Xavier, A. R., Cerqueira, G. S., & Souza, E. P. (2020). Um estudo sobre a tecnologia 3D aplicada ao ensino de anatomia: uma revisão integrativa. Research, Society and Development, 9(11), e7489119301. https://doi.org/10.33448/rsd-v9i11.9301.

Neto, J. S., Pinho, F. V. A., Matos, H. L., Lopes, A. R. O., Cerqueira, G. S., & Souza, E. P. (2021). Tecnologias de ensino utilizadas na Educação na pandemia COVID-19: uma revisão integrativa. Research, Society and Development, 10(1), e51710111974. https://doi.org/10.33448/rsd-v10i1.11974.

Su, W., Xiao, Y., He, S., Huang, P., & Deng, X. (2018). Three-dimensional printing models in congenital heart disease education for medical students: a controlled comparative study. BMC Medical Education, 18(178), 1-6. https://doi.org/10.1186/s12909-018-1293-0

Utiyama, B.; Hernandes, C.; Senra, T.; Gospos, M.; Sá, R.; Leme, J.; Fonseca, J.; Drigo, E.; Leão, T.; Pinto, I.; & Andrade, A. (2014). Construção De Biomodelos Por Impressão 3D Para Uso Na Prática Clínica: Experiencia Do Instituto Dante Pazzanese De Cardiologia. XXIV Congresso Brasileiro de Engenharia Biomédica – CBEB. Disponível em: https://www.canal6.com.br/cbeb/2014/artigos/cbeb2014_submission_095.pdf Acesso: 11/08/21.

Valverde, I. (2017). Three-dimensional Printed Cardiac Models: Applications in the Field of Medical Education, Cardiovascular Surgery, and Structural Heart Interventions. Revista espanola de cardiologia (English ed.), 70(4), 282–291. https://doi.org/10.1016/j.rec.2017.01.012.

Wen, C. L. (2016). Homem Virtual (Ser Humano Virtual 3D): A Integração da Computação Gráfica, Impressão 3D e Realidade Virtual para Aprendizado de Anatomia, Fisiologia e Fisiopatologia. Revista de Graduação da USP, 1(1), 7-15. https://doi.org/10.11606/issn.2525-376X.v1i1p7-15.

Wilk, R., Likus, W., Hudecki, A., Syguła, M., Różycka-Nechoritis, A., & Nechoritis, K. (2020). What would you like to print? Students' opinions on the use of 3D printing technology in medicine. PloS one, 15(4), e0230851. https://doi.org/10.1371/journal.pone.0230851.

Wu, A. M., Wang, K., Chen, C. H., Yang, X. D., Ni, W. F., & Hu, Y. Z. (2018). The addition of 3D printed models to enhance the teaching and learning of bone spatial anatomy and fractures for undergraduate students: a randomized controlled study. Annals of Translational Medicina, 6(20), 403- 410. https://doi.org/10.21037/atm.2018.09.59.

Zhang, J., & Yu, Z. (2016). Overview of 3D Printing Technologies for Reverse Engineering Product Design. Automatic Control and Computer Sciences, 50(2), 91-97. https://doi.org/10.3103/S0146411616020073.

Published

04/09/2021

How to Cite

ARAUJO, M. C. E. de .; DUARTE, M. M. de S. .; LOUREDO, L. da M. .; LOUREDO, J. da M. .; ARRUDA, J. T. . Contributions of reverse engineering and 3D models production for medical education. Research, Society and Development, [S. l.], v. 10, n. 11, p. e385101119692, 2021. DOI: 10.33448/rsd-v10i11.19692. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19692. Acesso em: 4 jan. 2025.

Issue

Section

Review Article