Use of artificial intelligence for prediction of work accidents with biological risks in healthcare professionals

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.19743

Keywords:

Artificial Intelligence; Occupational Accidents; Occupational Health; Primary health care.

Abstract

This study developed a software that calculates the chance of the health professional having zero, one, two, three or four or more accidents with biological hazards. Data from 111 questionnaires of health workers in primary and emergency care were used. The program achieved 95% accuracy in the training set (n=88) and 74% in the test set (n=23). The statistically significant associations, which also relied on data from 1,094 work accident reports, were greater abandonment of follow-up by physicians after an accident with biological materials in comparison with other professionals (p=0.02), nursing technicians and a higher prevalence of accidents with biological materials than other professionals (p<0.001), emergency care workers have more accidents with biological materials than primary care professionals (p<0.001) and increased follow-up abandonment after an accident with biological materials in the 2016-2018 period compared to 2007-2009 (p<0.001).

References

Aggarwal, L. P. (2019). Data augmentation in dermatology image recognition using machine learning. Skin Research and Technology, 25(6), 815–820. https://doi.org/10.1111/srt.12726

Almeida, M. C. M. de, Canini, S. R. M. da S., Reis, R. K., Toffano, S. E. M., Pereira, F. M. V., & Gir, E. (2015). Clinical treatment adherence of health care workers and students exposed to potentially infectious biological material. Revista Da Escola de Enfermagem Da USP, 49(2), 0259–0264. https://doi.org/10.1590/S0080-623420150000200011

Balyen, L., & Peto, T. (2019). Promising artificial intelligence–machine learning–deep learning algorithms in ophthalmology. Asia-Pacific Journal of Ophthalmology, 8(3), 264–272. https://doi.org/10.22608/APO.2018479

Barbosa, A. S. A. A., Do Amaral Diogo, G., Salotti, S. R. A., & Silva, S. M. U. R. (2017). Subnotificação de acidente ocupacional com materiais biológicos entre profissionais de Enfermagem em um hospital público. Revista Brasileira de Medicina Do Trabalho, 15(1), 12–17. https://doi.org/10.5327/Z1679443520177034

Castanha, A. R., Machado, A. A., & Figueiredo, M. A. de C. (2007). Conseqüências biopsicossociais do acidente ocupacional com material biológico potencialmente contaminado: perspectiva de pessoas do convívio íntimo do profissional da saúde. Rev. SBPH, 10(1), 65–84.

Centers for Disease Control and Prevention. (2001). Updated U.S. Public Health Service guidelines for the management of occupational exposures to HBV, HCV, and HIV and recommendations for postexposure prophylaxis.

Cheng, C. T., Ho, T. Y., Lee, T. Y., Chang, C. C., Chou, C. C., Chen, C. C., Chung, I. F., & Liao, C. H. (2019). Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs. European Radiology, 29(10), 5469–5477. https://doi.org/10.1007/s00330-019-06167-y

Chiodi, M. B., Marziale, M. H. P., & Robazzi, M. L. do C. C. (2007). Occupational accidents involving biological material among public health workers. Revista Latino-Americana de Enfermagem, 15(4), 632–638. https://doi.org/10.1590/s0104-11692007000400017

Dey, D., Slomka, P. J., Leeson, P., Comaniciu, D., Shrestha, S., Sengupta, P. P., & Marwick, T. H. (2019). Artificial Intelligence in Cardiovascular Imaging: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 73(11), 1317–1335. https://doi.org/10.1016/j.jacc.2018.12.054

Erdmann, A. L., de Andrade, S. R., de Mello, A. L. S. F., & Drago, L. C. (2013). A atenção secundária em saúde: Melhores práticas na rede de serviços. Revista Latino-Americana de Enfermagem, 21(SPL), 131–139. https://doi.org/10.1590/S0104-11692013000700017

Hamet, P., & Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism: Clinical and Experimental, 69, S36–S40. https://doi.org/10.1016/j.metabol.2017.01.011

Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., Aerts, H. J. W. L., & Edu, H. H. (2018). Artificial intelligence in radiology HHS Public Access. Nat Rev Cancer, 18(8), 500–510. https://doi.org/10.1038/s41568-018-0016-5

Johnson, K. W., Torres Soto, J., Glicksberg, B. S., Shameer, K., Miotto, R., Ali, M., Ashley, E., & Dudley, J. T. (2018). Artificial Intelligence in Cardiology. Journal of the American College of Cardiology, 71(23), 2668–2679. https://doi.org/10.1016/j.jacc.2018.03.521

Kapoor, R., Walters, S. P., & Al-Aswad, L. A. (2019). The current state of artificial intelligence in ophthalmology. Survey of Ophthalmology, 64(2), 233–240. https://doi.org/10.1016/j.survophthal.2018.09.002

Kon, N. M., Soltoski, F., Reque, M., & Do Amaral Lozovey, J. C. (2011). Acidentes de trabalho com material biológico em uma Unidade Sentinela: Casuística de 2.683 casos. Revista Brasileira de Medicina Do Trabalho, 9(1), 33–38.

Krittanawong, C., Zhang, H. J., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial Intelligence in Precision Cardiovascular Medicine. Journal of the American College of Cardiology, 69(21), 2657–2664. https://doi.org/10.1016/j.jacc.2017.03.571

Magagnini, M. A. M., Rocha, S. A., & Ayres, J. A. (2011). O significado do acidente de trabalho com material biológico para os profissionais de enfermagem. Revista Gaúcha de Enfermagem, 32(2), 302–308. https://doi.org/10.1590/S1983-14472011000200013

McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G. C., Darzi, A., Etemadi, M., Garcia-Vicente, F., Gilbert, F. J., Halling-Brown, M., Hassabis, D., Jansen, S., Karthikesalingam, A., Kelly, C. J., King, D., & Shetty, S. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89–94. https://doi.org/10.1038/s41586-019-1799-6

Meyer-Lindenberg, A. (2018). Artificial intelligence in psychiatry—an overview. Nervenarzt, 89(8), 861–868. https://doi.org/10.1007/s00115-018-0557-6

Ministério da Fazenda. (2007). Anuário Estatístico de acidentes do trabalho.

Ministério da Fazenda. (2017). Anuário Estatístico de acidentes do trabalho.

Ministério da Saúde. (2018). Protocolo clínico e diretrizes terapêuticas para profilaxia pós-exposição (PEP) de risco à infecção pelo HIV, IST e Hepatites Virais.

Nensa, F., Demircioglu, A., & Rischpler, C. (2019). Artificial intelligence in nuclear medicine. Journal of Nuclear Medicine, 60(9), 29S-37S. https://doi.org/10.2967/jnumed.118.220590

Niel, O., & Bastard, P. (2019). Artificial Intelligence in Nephrology: Core Concepts, Clinical Applications, and Perspectives. American Journal of Kidney Diseases, 74(6), 803–810. https://doi.org/10.1053/j.ajkd.2019.05.020

Paiva, M. H. R. S., & Oliveira, A. C. (2011). Fatores determinantes e condutas pós-acidente com material biológico entre profisisonais do atentimento pré-hospitalar. Revista Brasileira de Enfermagem, 64(2), 268–273. https://doi.org/10.1590/s0034-71672011000200008

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. UFSM.

Sardeiro, T. L., de Souza, C. L., de Arvelos Salgado, T., Júnior, H. G., Neves, Z. C. P., & Tipple, A. F. V. (2019). Work accidents with biological material: Factors associated with abandoning clinical and laboratory follow-up*. Revista Da Escola de Enfermagem, 53, 1–9. https://doi.org/10.1590/S1980-220X2018029703516

Schork, N. J. (2019). Artificial Intelligence and Personalized Medicine. Cancer Treatment and Research, 178, 265–283. https://doi.org/10.1007/978-3-030-16391-4_11

Shimizu, H., & Nakayama, K. I. (2020). Artificial intelligence in oncology. Cancer Science, 111(5), 1452–1460. https://doi.org/10.1111/cas.14377

Silva, J. A. da, Paula, V. S. de, Almeida, A. J. de, & Villar, L. M. (2009). Investigação de acidentes biológicos entre profissionais de saúde. Escola Anna Nery, 13(3), 508–516. https://doi.org/10.1590/s1414-81452009000300008

Souza-Borges, F. R. F., Ribeiro, L. A., & de Oliveira, L. C. M. (2014). Exposições ocupacionais a fluídos corporais e comportamentos em relação à sua prevenção e pós-exposição entre estudantes de medicina e de enfermagem de universidade pública Brasileira. Revista Do Instituto de Medicina Tropical de Sao Paulo, 56(2), 157–163. https://doi.org/10.1590/S0036-46652014000200012

Stewart, J., Sprivulis, P., & Dwivedi, G. (2018). Artificial intelligence and machine learning in emergency medicine. EMA - Emergency Medicine Australasia, 30(6), 870–874. https://doi.org/10.1111/1742-6723.13145

Suarez-Ibarrola, R., Hein, S., Reis, G., Gratzke, C., & Miernik, A. (2019). Current and future applications of machine and deep learning in urology: a review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer. World Journal of Urology, Ml. https://doi.org/10.1007/s00345-019-03000-5

Syed, A. B., & Zoga, A. C. (2018). Artificial Intelligence in Radiology: Current Technology and Future Directions. Seminars in Musculoskeletal Radiology, 22(5), 540–545. https://doi.org/10.1055/s-0038-1673383

Tarantola, A., Abiteboul, D., & Rachline, A. (2006). Infection risks following accidental exposure to blood or body fluids in health care workers: A review of pathogens transmitted in published cases. American Journal of Infection Control, 34(6), 367–375. https://doi.org/10.1016/j.ajic.2004.11.011

Theofilatos, K., Pavlopoulou, N., Papasavvas, C., Likothanassis, S., Dimitrakopoulos, C., Georgopoulos, E., Moschopoulos, C., & Mavroudi, S. (2015). Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering. Artificial Intelligence in Medicine, 63(3), 181–189. https://doi.org/10.1016/j.artmed.2014.12.012

Thomas, R., Galanakis, C., Vézina, S., Longpré, D., Boissonnault, M., Huchet, E., Charest, L., Murphy, D., Trottier, B., & Machouf, N. (2015). Adherence to post-exposure prophylaxis (PEP) and incidence of HIV seroconversion in a major North American cohort. PLoS ONE, 10(11), 1–10. https://doi.org/10.1371/journal.pone.0142534

Ting, D. S. W., Pasquale, L. R., Peng, L., Campbell, J. P., Lee, A. Y., Raman, R., Tan, G. S. W., Schmetterer, L., Keane, P. A., & Wong, T. Y. (2019). Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103(2), 167–175. https://doi.org/10.1136/bjophthalmol-2018-313173

Walsh, S. L. F., Calandriello, L., Silva, M., & Sverzellati, N. (2018). Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study. The Lancet Respiratory Medicine, 6(11), 837–845. https://doi.org/10.1016/S2213-2600(18)30286-8

Wang, R., Pan, W., Jin, L., Li, Y., Geng, Y., Gao, C., Chen, G., Wang, H., Ma, D., & Liao, S. (2019). Artificial intelligence in reproductive medicine. Reproduction, 158(4), R139–R154. https://doi.org/10.1530/REP-18-0523

Published

14/09/2021

How to Cite

GROTO, A. D.; PERLIN, C. M. .; ANDRADE, S. M. de .; SALAMANCA, M. A. B. . Use of artificial intelligence for prediction of work accidents with biological risks in healthcare professionals. Research, Society and Development, [S. l.], v. 10, n. 12, p. e93101219743, 2021. DOI: 10.33448/rsd-v10i12.19743. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19743. Acesso em: 2 jan. 2025.

Issue

Section

Health Sciences