Uso de la inteligencia artificial para la predicción de accidentes de trabajo con materiales biológicos en profesionales de la salud
DOI:
https://doi.org/10.33448/rsd-v10i12.19743Palabras clave:
Inteligencia Artificial; Accidentes Laborales; Salud Laboral; Atención primaria.Resumen
El objetivo de este estudio es desarrollar un programa informático que calcule la probabilidad de que un profesional de salud tenga cero, uno, dos, tres o cuatro o más accidentes con riesgo biológico. Se utilizaron datos de 111 cuestionarios de trabajadores de la atención primaria y de urgencias. El programa alcanzó 95% de precisión en el conjunto entrenamiento (n=88) y 74% en el conjunto de prueba (n=23). Las asociaciones estadísticamente significativas, que también incluyeron datos de 1.094 Comunicaciones de Accidentes de Trabajo, fueron el mayor abandono del seguimiento por parte de los médicos tras un accidente con materiales biológicos en comparación con otros profesionales (p=0,02), los técnicos de enfermería y mayor prevalencia de accidentes con materiales biológicos que otros profesionales (p<0,001), los trabajadores de urgencias presentan más accidentes con material biológico que los profesionales de atención primaria (p<0,001) y aumento del abandono tras accidente con material biológico en el trienio 2016-2018 respecto a 2007-2009 (p<0,001).
Citas
Aggarwal, L. P. (2019). Data augmentation in dermatology image recognition using machine learning. Skin Research and Technology, 25(6), 815–820. https://doi.org/10.1111/srt.12726
Almeida, M. C. M. de, Canini, S. R. M. da S., Reis, R. K., Toffano, S. E. M., Pereira, F. M. V., & Gir, E. (2015). Clinical treatment adherence of health care workers and students exposed to potentially infectious biological material. Revista Da Escola de Enfermagem Da USP, 49(2), 0259–0264. https://doi.org/10.1590/S0080-623420150000200011
Balyen, L., & Peto, T. (2019). Promising artificial intelligence–machine learning–deep learning algorithms in ophthalmology. Asia-Pacific Journal of Ophthalmology, 8(3), 264–272. https://doi.org/10.22608/APO.2018479
Barbosa, A. S. A. A., Do Amaral Diogo, G., Salotti, S. R. A., & Silva, S. M. U. R. (2017). Subnotificação de acidente ocupacional com materiais biológicos entre profissionais de Enfermagem em um hospital público. Revista Brasileira de Medicina Do Trabalho, 15(1), 12–17. https://doi.org/10.5327/Z1679443520177034
Castanha, A. R., Machado, A. A., & Figueiredo, M. A. de C. (2007). Conseqüências biopsicossociais do acidente ocupacional com material biológico potencialmente contaminado: perspectiva de pessoas do convívio íntimo do profissional da saúde. Rev. SBPH, 10(1), 65–84.
Centers for Disease Control and Prevention. (2001). Updated U.S. Public Health Service guidelines for the management of occupational exposures to HBV, HCV, and HIV and recommendations for postexposure prophylaxis.
Cheng, C. T., Ho, T. Y., Lee, T. Y., Chang, C. C., Chou, C. C., Chen, C. C., Chung, I. F., & Liao, C. H. (2019). Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs. European Radiology, 29(10), 5469–5477. https://doi.org/10.1007/s00330-019-06167-y
Chiodi, M. B., Marziale, M. H. P., & Robazzi, M. L. do C. C. (2007). Occupational accidents involving biological material among public health workers. Revista Latino-Americana de Enfermagem, 15(4), 632–638. https://doi.org/10.1590/s0104-11692007000400017
Dey, D., Slomka, P. J., Leeson, P., Comaniciu, D., Shrestha, S., Sengupta, P. P., & Marwick, T. H. (2019). Artificial Intelligence in Cardiovascular Imaging: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 73(11), 1317–1335. https://doi.org/10.1016/j.jacc.2018.12.054
Erdmann, A. L., de Andrade, S. R., de Mello, A. L. S. F., & Drago, L. C. (2013). A atenção secundária em saúde: Melhores práticas na rede de serviços. Revista Latino-Americana de Enfermagem, 21(SPL), 131–139. https://doi.org/10.1590/S0104-11692013000700017
Hamet, P., & Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism: Clinical and Experimental, 69, S36–S40. https://doi.org/10.1016/j.metabol.2017.01.011
Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., Aerts, H. J. W. L., & Edu, H. H. (2018). Artificial intelligence in radiology HHS Public Access. Nat Rev Cancer, 18(8), 500–510. https://doi.org/10.1038/s41568-018-0016-5
Johnson, K. W., Torres Soto, J., Glicksberg, B. S., Shameer, K., Miotto, R., Ali, M., Ashley, E., & Dudley, J. T. (2018). Artificial Intelligence in Cardiology. Journal of the American College of Cardiology, 71(23), 2668–2679. https://doi.org/10.1016/j.jacc.2018.03.521
Kapoor, R., Walters, S. P., & Al-Aswad, L. A. (2019). The current state of artificial intelligence in ophthalmology. Survey of Ophthalmology, 64(2), 233–240. https://doi.org/10.1016/j.survophthal.2018.09.002
Kon, N. M., Soltoski, F., Reque, M., & Do Amaral Lozovey, J. C. (2011). Acidentes de trabalho com material biológico em uma Unidade Sentinela: Casuística de 2.683 casos. Revista Brasileira de Medicina Do Trabalho, 9(1), 33–38.
Krittanawong, C., Zhang, H. J., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial Intelligence in Precision Cardiovascular Medicine. Journal of the American College of Cardiology, 69(21), 2657–2664. https://doi.org/10.1016/j.jacc.2017.03.571
Magagnini, M. A. M., Rocha, S. A., & Ayres, J. A. (2011). O significado do acidente de trabalho com material biológico para os profissionais de enfermagem. Revista Gaúcha de Enfermagem, 32(2), 302–308. https://doi.org/10.1590/S1983-14472011000200013
McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G. C., Darzi, A., Etemadi, M., Garcia-Vicente, F., Gilbert, F. J., Halling-Brown, M., Hassabis, D., Jansen, S., Karthikesalingam, A., Kelly, C. J., King, D., & Shetty, S. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89–94. https://doi.org/10.1038/s41586-019-1799-6
Meyer-Lindenberg, A. (2018). Artificial intelligence in psychiatry—an overview. Nervenarzt, 89(8), 861–868. https://doi.org/10.1007/s00115-018-0557-6
Ministério da Fazenda. (2007). Anuário Estatístico de acidentes do trabalho.
Ministério da Fazenda. (2017). Anuário Estatístico de acidentes do trabalho.
Ministério da Saúde. (2018). Protocolo clínico e diretrizes terapêuticas para profilaxia pós-exposição (PEP) de risco à infecção pelo HIV, IST e Hepatites Virais.
Nensa, F., Demircioglu, A., & Rischpler, C. (2019). Artificial intelligence in nuclear medicine. Journal of Nuclear Medicine, 60(9), 29S-37S. https://doi.org/10.2967/jnumed.118.220590
Niel, O., & Bastard, P. (2019). Artificial Intelligence in Nephrology: Core Concepts, Clinical Applications, and Perspectives. American Journal of Kidney Diseases, 74(6), 803–810. https://doi.org/10.1053/j.ajkd.2019.05.020
Paiva, M. H. R. S., & Oliveira, A. C. (2011). Fatores determinantes e condutas pós-acidente com material biológico entre profisisonais do atentimento pré-hospitalar. Revista Brasileira de Enfermagem, 64(2), 268–273. https://doi.org/10.1590/s0034-71672011000200008
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. UFSM.
Sardeiro, T. L., de Souza, C. L., de Arvelos Salgado, T., Júnior, H. G., Neves, Z. C. P., & Tipple, A. F. V. (2019). Work accidents with biological material: Factors associated with abandoning clinical and laboratory follow-up*. Revista Da Escola de Enfermagem, 53, 1–9. https://doi.org/10.1590/S1980-220X2018029703516
Schork, N. J. (2019). Artificial Intelligence and Personalized Medicine. Cancer Treatment and Research, 178, 265–283. https://doi.org/10.1007/978-3-030-16391-4_11
Shimizu, H., & Nakayama, K. I. (2020). Artificial intelligence in oncology. Cancer Science, 111(5), 1452–1460. https://doi.org/10.1111/cas.14377
Silva, J. A. da, Paula, V. S. de, Almeida, A. J. de, & Villar, L. M. (2009). Investigação de acidentes biológicos entre profissionais de saúde. Escola Anna Nery, 13(3), 508–516. https://doi.org/10.1590/s1414-81452009000300008
Souza-Borges, F. R. F., Ribeiro, L. A., & de Oliveira, L. C. M. (2014). Exposições ocupacionais a fluídos corporais e comportamentos em relação à sua prevenção e pós-exposição entre estudantes de medicina e de enfermagem de universidade pública Brasileira. Revista Do Instituto de Medicina Tropical de Sao Paulo, 56(2), 157–163. https://doi.org/10.1590/S0036-46652014000200012
Stewart, J., Sprivulis, P., & Dwivedi, G. (2018). Artificial intelligence and machine learning in emergency medicine. EMA - Emergency Medicine Australasia, 30(6), 870–874. https://doi.org/10.1111/1742-6723.13145
Suarez-Ibarrola, R., Hein, S., Reis, G., Gratzke, C., & Miernik, A. (2019). Current and future applications of machine and deep learning in urology: a review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer. World Journal of Urology, Ml. https://doi.org/10.1007/s00345-019-03000-5
Syed, A. B., & Zoga, A. C. (2018). Artificial Intelligence in Radiology: Current Technology and Future Directions. Seminars in Musculoskeletal Radiology, 22(5), 540–545. https://doi.org/10.1055/s-0038-1673383
Tarantola, A., Abiteboul, D., & Rachline, A. (2006). Infection risks following accidental exposure to blood or body fluids in health care workers: A review of pathogens transmitted in published cases. American Journal of Infection Control, 34(6), 367–375. https://doi.org/10.1016/j.ajic.2004.11.011
Theofilatos, K., Pavlopoulou, N., Papasavvas, C., Likothanassis, S., Dimitrakopoulos, C., Georgopoulos, E., Moschopoulos, C., & Mavroudi, S. (2015). Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering. Artificial Intelligence in Medicine, 63(3), 181–189. https://doi.org/10.1016/j.artmed.2014.12.012
Thomas, R., Galanakis, C., Vézina, S., Longpré, D., Boissonnault, M., Huchet, E., Charest, L., Murphy, D., Trottier, B., & Machouf, N. (2015). Adherence to post-exposure prophylaxis (PEP) and incidence of HIV seroconversion in a major North American cohort. PLoS ONE, 10(11), 1–10. https://doi.org/10.1371/journal.pone.0142534
Ting, D. S. W., Pasquale, L. R., Peng, L., Campbell, J. P., Lee, A. Y., Raman, R., Tan, G. S. W., Schmetterer, L., Keane, P. A., & Wong, T. Y. (2019). Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103(2), 167–175. https://doi.org/10.1136/bjophthalmol-2018-313173
Walsh, S. L. F., Calandriello, L., Silva, M., & Sverzellati, N. (2018). Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study. The Lancet Respiratory Medicine, 6(11), 837–845. https://doi.org/10.1016/S2213-2600(18)30286-8
Wang, R., Pan, W., Jin, L., Li, Y., Geng, Y., Gao, C., Chen, G., Wang, H., Ma, D., & Liao, S. (2019). Artificial intelligence in reproductive medicine. Reproduction, 158(4), R139–R154. https://doi.org/10.1530/REP-18-0523
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Anderson Dillmann Groto; Cássio Marques Perlin; Sonia Mara de Andrade; Mayara Angélica Bolson Salamanca
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.