Azithromycin: characteristics and clinical indications for bacterial and virus infections, including SARS-CoV-2 infections
DOI:
https://doi.org/10.33448/rsd-v10i12.19864Keywords:
COVID-19; SARS-CoV-2; Clinical trial; Hydroxychloroquine; Azithromycin.Abstract
Objective: to accomplish a literature review to research the clinical characteristics of azythromycin, and its indications and associations for SARS-CoV-2 infections. Methodology: Electronic searches were carried out on PUBMED Central, BVS/BIREME, Web of Science and The Cochrane Library with the aid of key-words. Results: Azithromycin is a secure antibiotic belonging to the macrolide class, effective for a vast number of infections, especially respiratory diseases. It seems to have viral indirect activity due to its being capable of altering the cell machinery, including mitochondrias, for changing the normal functioning of mitochondrial ribosomes. Conclusion: It is uncertain whether azithromycin is eligible for the treatment of virus infections in general and especially for COVID-19. Its combination with hydroxychloroquine, however, should be better researched in order to answer if it can be applied as a clinical approach for this matter.
References
Amsden G. W (2005). Anti-inflammatory effects of macrolides—An underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions? J. Antimicrob. Chemother. ;55:10–21. doi: 10.1093/jac/dkh519. [PubMed] [CrossRef] [Google Scholar]
Agrawal, R. K., Penczek, P., Grassucci, R. A. & Frank, J. (1998) Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl Acad. Sci. USA 95, 6134–6138
AmsdenG.W. (2001) Advanced-generation macrolides: Tissue-directed antibiotics. Int. J. Antimicrob. Agents.18:S11–S15. doi: 10.1016/S0924-8579(01)00410-1. [PubMed] [CrossRef] [Google Scholar].
Cloroquinapoderá ser usada em casos graves do coronavírus. Brazil: Ministério da Saúde, May 25, 2020 (https://www.saude.gov.br/noticias/agencia-saude/46601-cloroquina-podera-ser-usada-em-casos-graves-do-coronavirus. opens in new tab).
Čulić O., Eraković V., & Parnham M.J. (2001) Anti-inflammatory effects of macrolide antibiotics. Eur. J. Pharmacol. ;429:209–229. doi: 10.1016/S0014-2999(01)01321-8. [PubMed] [CrossRef] [Google Scholar]
De Lusignan S, Joy M, Sherlock J, et al. (2021) PRINCIPLE trial demonstrates scope for in-pandemic improvement in primary care antibiotic stewardship. medRxiv; published online Feb 4. https://doi.org/10.1101/2021.02.02.21250902 (preprint).
Gabashvili, I. S. et al. (1999) Major rearrangements in the 70S ribosomal 3D structure caused by a conformational switch in 16S ribosomal RNA. EMBO J. 18, 6501–6507.
Gautret P, Lagier J C, Parola P, et al. (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J AntimicrobAgents March 20 (Epub ahead of print).
Gerard Tortora, & Bryan Derrickson. Principles of Anatomy and Physiology, (12th Ed.), John Wiley & Sons, USA, 74-80.
Hand W. L., &Hand D. L. (2001) Characteristics and mechanisms of azithromycin accumulation and efflux in human polymorphonuclear leukocytes. Int. J. Antimicrob. Agents. ;18:419–425. doi: 10.1016/S0924-8579(01)00430-7. [PubMed] [CrossRef] [Google Scholar]
Hecht S. M. (2000) Bleomycin: New perspectives on the mechanism of action. J. Nat. Prod. ;63:158–168. doi: 10.1021/np990549f. [PubMed] [CrossRef] [Google Scholar]
Hernando-SastreV. (2010) Macrolide antibiotics in the treatment of asthma. An update. Allergol. Immunopathol. ;38:92–98. doi: 10.1016/j.aller.2009.12.002. [PubMed] [CrossRef] [Google Scholar]
Hopkin S. (1991) Clinical toleration and safety of azithromycin. Am. J. Med. ;91:40S–45S. doi: 10.1016/0002-9343(91)90401-I. [PubMed] [CrossRef] [Google Scholar]
Kagkelaris K. A., Makri O. E., Georgakopoulos C. D., & Panayiotakopoulos G. D. (2018) An eye for azithromycin: Review of the literature. Ther. Adv. Ophthalmol. ;10:2515841418783622. doi: 10.1177/2515841418783622. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Labro M. T. (1998) Anti-inflammatory activity of macrolides: A new therapeutic potential? J. Antimicrob. Chemother. ;41:37–46. doi: 10.1093/jac/41.suppl_2.37. [PubMed] [CrossRef] [Google Scholar]
Labro M. T. (2004) Macrolide antibiotics: Current and future uses. Expert Opin. Pharmacother;5:541–550. doi: 10.1517/14656566.5.3.541. [PubMed] [CrossRef] [Google Scholar]
Liu J, Cao R, Xu M, et al. (2020) Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov ;6:16-16.
Marjanović N., Bosnar M., Michielin F., Willé D.R., Anić-Milić T., Čulić O., Popović-Grle S., Bogdan M., Parnham M.J., & Eraković Haber V. (2011) Macrolide antibiotics broadly and distinctively inhibit cytokine and chemokine production by COPD sputum cells in vitro. Pharmacol. Res. ;63:389–397. doi: 10.1016/j.phrs.2011.02.001. [PubMed] [CrossRef] [Google Scholar]
McDonald P. J., & Pruul H. (1991) Phagocyte uptake and transport of azithromycin. Eur. J. Clin. Microbiol. Infect. Dis. ;10:828–833. doi: 10.1007/BF01975835. [PubMed] [CrossRef] [Google Scholar]
Matzneller P., Krasniqi S., Kinzig M., Sörgel F., Hüttner S., Lackner E., Müller M., & ZeitlingerM. (2013)Blood, tissue, and intracellular concentrations of azithromycin during and after end of therapy. Antimicrob. Agents Chemother. ;57:1736–1742. doi: 10.1128/AAC.02011-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Min JY, Jang YJ. (2012) Macrolide therapy in respiratory viral infections. Mediators Inflamm; 649570.
Ministério da Saúdedivulgadiretrizes para tratamentomedicamentoso de pacientes. Brazil: Ministério da Saúde, May 20, 2020 (https://www.saude.gov.br/noticias/agencia-saude/46919-ministerio-da-saude-divulga-diretrizes-para-tratamento-medicamentoso-de-pacientes. opens in new tab).
Ogle, J. M. et al. (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902. Insights into the decoding process.
Oliver M E, & Hinks T S C. (2020) Azithromycin in viral infections. Rev Med Virol; published online Sept 23. https://doi.org/10.1002/ rmv.2163.
Omura S., & Shiomi K. (2007) Discovery, chemistry, and chemical biology of microbial products. Pure Appl. Chem;79:581–591. doi: 10.1351/pac200779040581. [CrossRef] [Google Scholar]
Omura S. (2002) Macrolide Antibiotics. Chemistry, Biology and Practice. Academic Press Inc.; San Diego, CA, USA:. [Google Scholar]
Ramakrishnan V.(2014)The ribosome emerges from a black box. Cell.; 159: 979-984.
Perić M., Fajdetić A., Rupčić R., Alihodžić S., Žiher D., BukvićKrajačić M., Smith K. S., Ivezić-Schönfeld Z., Padovan J., & Landek G. (2012) , et al. Antimalarial activity of 9a-N substituted 15-membered azalides with improved in vitro and in vivo activity over azithromycin. J. Med. Chem. ;55:1389–1401. doi: 10.1021/jm201615t. [PubMed] [CrossRef] [Google Scholar]
Piacentini G. L., Peroni D. G., Bodini A., Pigozzi R., Costella S., Loiacono A., & Boner A. L. (2007) Azithromycin reduces bronchial hyperresponsiveness and neutrophilic airway inflammation in asthmatic children: A preliminary report. Allergy Asthma Proc. ;28:194–198. doi: 10.2500/aap.2007.28.2958. [PubMed] [CrossRef] [Google Scholar]
Poschet J, Perkett E, Timmins G, & DereticV. (2020) Azithromycin and ciprofloxacin have a chloroquine-like effect on respiratory epithelial cells. bioRxiv; published online March 31. https://doi.org/ 10.1101/2020.03.29.008631 (preprint).
Ramakrishnan V. (2014) The ribosome emerges from a black box. Cell.; 159: 979-984.
Salimi A., Eybagi S., Seydi E., Naserzadeh P., Kazerouni N. P., & Pourahmad J. (2016) Toxicity of macrolide antibiotics on isolated heart mitochondria: A justification for their cardiotoxic adverse effect. Xenobiotica. ;46:82–93. doi: 10.3109/00498254.2015.1046975. [PubMed] [CrossRef] [Google Scholar]
Sassa K., Mizushima Y., Fujishita T., Oosaki R., & Kobayashi M. (1999) Therapeutic effect of clarithromycin on a transplanted tumor in rats. J. Antimicrob. Chemother. 43:67–72. [PMC free article] [PubMed] [Google Scholar]
Tacar O., Sriamornsak P., & Dass C.R. (2013) Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol;65:157–170. doi: 10.1111/j.2042-7158.2012.01567.x. [PubMed] [CrossRef] [Google Scholar]
Tagaya E, Tamaoki J, & Konno K. (1994) Erythromycin inhibits cholinergic neuro-effector transmission in canine airway smooth muscle. Res Commun Mol PatholPharmacol ;85:181–192.
Touret F, Gilles M, & Barral K, et al. (2020) In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Sci Rep; 10: 13093.
Vandeputte P., Ferrari S., & Coste A.T. (2012) Antifungal resistance and new strategies to control fungal infections. Int. J. Microbiol. doi: 10.1155/2012/713687. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Wolter J., Seeney S., Bell S., Bowler S., Masel P., & McCormack J.(2002) Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax;57:212–216. doi: 10.1136/thorax.57.3.212. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. [https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Gabriel Henrique Queiroz Oliveira; Guilherme Marinho Sampaio; Hadassa Fonsêca Silva; Douglas José Abreu da Silva Cristovam; Rodolfo Scavuzzi Carneiro Cunha; Sandra Sayão Maia; Paulo Melo Júnior; Felipe Leonardo de Melo Almeida Fonseca; Alexandrino Pereira dos Santos Neto; Ailton Coelho de Ataíde Filho; Luciano Barreto Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.