Prediction of the specific mass of cherry tomatoes and of the coefficient of thermal expansion
DOI:
https://doi.org/10.33448/rsd-v10i12.19941Keywords:
Mathematical model; Temperature; Cherry tomatoes; Density; Concentration.; Thermal expansion coefficientAbstract
The objective of this work was to obtain the best mathematical model to predict the specific mass of the cherry tomato pulp depending on the temperature (10, 20, 30, 40, 50, 60 and 70 °C) and on the soluble solids’ concentration (3,0; 4,5 and 6,0 °Brix) and, consequently, to determine the thermal expansion coefficient equation (β) for the pulp. The specific mass analyses of the cherry tomato pulp were performed with the use of pycnometer. The temperature was controlled through the Thermostatic Bath, and the concentration of soluble solids was determined with the aid portable refractometer. The polynomial mathematical models were adjusted to the specific mass data depending on the temperature (°C) and on the concentration (ºBrix). The coefficient of thermal expansion (β) was calculated from a thermodynamic expression. The average experimental values of the specific mass of cherry tomato pulp depending on the temperatures and on the soluble solids’ concentrations ranged from 989.05 to 1032.14 kg. m-3, tending to decrease with the increase in temperature and to increase with the increase in the soluble solids concentration. The mathematical models that best fit the experimental data were second and third degree, with the coefficients of determination (R2) higher than 0.991. The mathematical model of 2nd degree was chosen to determine the coefficient of thermal expansion equation, because it facilitates the implementation and decreases the simulation time.
References
Alvarado, J. D. D., & Romero, C. H. (1989). Physical properties of fruits I-II. density and viscosity of juices as functions of soluble solids content and temperature. Latin American Applied Research, 19(15), 15-21.
Bolzan, T. G., & Souza, D. D. (2007). Estudo do comportamento da massa específica de suco de laranja em função da temperatura e da concentração. Salão de Iniciação Científica (19.: 2007: Porto Alegre, RS). Livro de resumos. Porto Alegre: UFRGS, 2007.
Bonomo, R. C. F., Fontan, R., de Souza, T. S., Veloso, C. M., Reis, M. F. T., & Souza, S. D. (2009). Thermophysical properties of cashew juice at different concentrations and temperatures. Revista Brasileira de Produtos Agroindustriais, 11(1), 35-42.
Chin, N. L., Chan, S. M., Yusof, Y. A., Chuah, T. G., & Talib, R. A. (2008). Prediction of physicochemical properties of pummelo juice concentrates as a function of temperature and concentration. International Journal of Food Engineering, 4(7).
Dantas, H. C., Melo, J. C. S., Oliveira, R. G. M., Badaró, A. D. S., & Santos, E. R. M. (2020). Predição da massa específica da polpa de acerola a partir de modelos matemáticos. Revista Brasileira de Gestão Ambiental, 14(1), 12-16.
Egea, M. B., Reis, M. H. M., & Danesi, E. D. G. (2015). Aplicação de modelos matemáticos preditivos para o cálculo das propriedades termofísicas do palmito pupunha. Revista Brasileira de Produtos Agroindustriais, Campina Grande, 17(2), 179-187.
Giraldo, G. I., Cruz, C. D., & Sanabria, N. R. (2017). Propiedades físicas del jugo de uchuva (Physalis peruviana) clarificado en función de la concentración y la temperatura. Información tecnológica, 28(1), 133-142.
Guedes, D. B., Ramos, A. M., & Diniz, M. D. M. S. (2010). Efeito da temperatura e da concentração nas propriedades físicas da polpa de melancia. Brazilian Journal of Food Technology, 13(4), 279-285.
Guilherme, D. D. O., de Pinho, L., Cavalcanti, T. F. M., da Costa, C. A., & de Almeida, A. C. (2014). Análise sensorial e físico-química de frutos tomate cereja orgânicos. Revista Caatinga, 27(1), 181-186.
Lenucci, M. S., Cadinu, D., Taurino, M., Piro, G., & Dalessandro, G. (2006). Antioxidant composition in cherry and high-pigment tomato cultivars. Journal of agricultural and food chemistry, 54(7), 2606-2613.
Mendes, K. F., Mendes, K. F., Guedes, S. F., Silva, L. C. A. S., & Arthur, V. (2020). Evaluation of physicochemical characteristics in cherry tomatoes irradiated with 60Co gamma-rays on post-harvest conservation. Radiation Physics and Chemistry, 177, 109139.
Mercali, G. D., Sarkis, J. R., Jaeschke, D. P., Tessaro, I. C., & Marczak, L. D. F. (2011). Physical properties of acerola and blueberry pulps. Journal of Food Engineering, 106(4), 283-289.
Oliveira, E. N. A. D., & Santos, D. D. C. (2015). Tecnologia e processamento de frutos e hortaliças.
Oliveira, R. G. M., Melo, J. C. S., Badaró, A. D. S., da Costa, C. H. C., Dantas, H. C., Dantas, E. H., & dos Santos Lima, F. C. (2020). Correlação matemática da massa específica da polpa de caju em diferentes temperaturas e concentrações. Brazilian Journal of Development, 6(5), 27844-27849.
Pereira, C. G. (2013). Propriedades termofísicas e comportamento reológico de polpa de acerola em diferentes concentrações e temperaturas. Dissertação (mestrado), Universidade Federal de Lavras, Lavras, MG, Brasil. Disponível: http://repositorio.ufla.br/bitstream/1/751/1/DISSERTACAO_Propriedades%20termof%C3%ADsicas%20e%20comportamento%20reol%C3%B3gico....pdf
Pereira, E. A., Queiroz, A. J. D. M., & de Figueirêdo, R. M. (2002). Massa específica de polpa de açaí em função do teor de sólidos totais e da temperatura. Revista Brasileira de engenharia agrícola e ambiental, 6, 526-530.
Sani, A. M., Hedayati, G., & Arianfar, A. (2014). Effect of temperature and concentration on density and rheological properties of melon (Cucumis melo L. var. Inodorus) juice. Nutrition & Food Science.
Santos, C. A., Carmo, M. G. F, Abboud, A. C. S. (2016). Novo nicho tomate cereja orgânico. Revista Campo & Negócios.
Silva, F. D. A. S., & de Azevedo, C. A. V. (2016). The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research, 11(39), 3733-3740.
Teixeira, T. R..; Oliveira, A. N.; Ramos, A. M. (2013). Efeitos da temperatura e concentração nas propriedades físicas da polpa de araçá-boi. Boletim do Centro de Pesquisa de Processamento de Alimentos, 31, (2).
Zuritz, C. A., Puntes, E. M., Mathey, H. H., Pérez, E. H., Gascón, A., Rubio, L. A., & Cabeza, M. S. (2005). Density, viscosity and coefficient of thermal expansion of clear grape juice at different soluble solid concentrations and temperatures. Journal of Food Engineering, 71(2), 143-149.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ana Clara Melo de Medeiros; Geovana Inácia Cândida Ramalho; Luciana Lorrane Ferreira Linhares; Relyson Gabriel Medeiros de Oliveira ; João Carlos Soares de Melo; Joaildo Maia; Adair Divino Silva Badaró ; Carlos Helaidio Chaves da Costa ; Flávia Cristina dos Santos Lima
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.