Remediation mechanisms of polycyclic aromatic petroleum hydrocarbons using microalgae and cyanobacteria with emphasis on circular bioeconomy

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19954

Keywords:

Produced water; Biorefinery; Persistent organic pollutants; Biological treatment.

Abstract

Produced water is an effluent from the oil and gas industry generated in large quantities. Its disposal without prior treatment can cause negative impacts not only to the environment but also to human health. This occurs due to the water's high salinity and composition that includes heavy metals, oil particles and chemical compounds with toxic properties. Among these compounds, polycyclic aromatic hydrocarbons (PAHs) are one of the most worrying groups. PAHs are recalcitrant, carcinogenic organic pollutants that, despite their toxicity, can be removed and degraded by microalgae and cyanobacteria through three mechanisms: phycoadsorption, phycosorption and phycodegradation. Based on the aforementioned, this review aims to provide an overview of the remediation mechanisms of polycyclic aromatic hydrocarbons (PAHs) by microalgae and cyanobacteria. This review takes into account the point of view of circular bioeconomy, where the biomass of microalgae and cyanobacteria is considered a potential source of essential elements for the generation of bioproducts such as biofuels and biopolymers.

References

Alam, F., Mobin, S., & Chowdhury, H. (2015). Third generation biofuel from algae. Procedia Engineering, 105, 763-768.

Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K. & Hunt, T. (2002). Biologia molecular da célula. Artmed Editora.

Aldaby, E. S. E., & Mawad, A. M. M. (2019). Pyrene biodegradation capability of two different microalgal strains. Global Nest Journal, 21(3), 290–295. https://doi.org/10.30955/gnj.002767

Al-Ghouti, M. A., Al-Kaabi, M. A., Ashfaq, M. Y., & Da’na, D. A. (2019). Produced water characteristics, treatment and reuse: A review. Journal of Water Process Engineering, 28, 222-239.

Amaral, M. S., Loures, C. C. A., Naves, F. L., Baeta, B. E. L., Silva, M. B., & Prata, A. M. R. (2020). Evaluation of cell growth performance of microalgae Chlorella minutissima using an internal light integrated photobioreactor. Journal of Environmental Chemical Engineering, 8(5), 104200.

Ammar, S. H., Khadim, H. J., & Mohamed, A. I. (2018). Cultivation of Nannochloropsis oculata and Isochrysis galbana microalgae in produced water for bioremediation and biomass production. Environmental Technology & Innovation, 10, 132-142.

Andrade, D. S., & Colozzi Filho, A. (2014). Microalgas de águas continentais.

ANP, Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (2020). Dados estatísticos. <https://www.gov.br/anp/pt-br/centrais-de-conteudo/dados-estatisticos>

Ashokkumar, V., Chen, W. H., Ngamcharussrivichai, C., Agila, E., & Ani, F. N. (2019). Potential of sustainable bioenergy production from Synechocystis sp. cultivated in wastewater at large scale–a low cost biorefinery approach. Energy Conversion and Management, 186, 188-199.

Bai, L. Xu, H. Wang, C. Deng, J. Jiang, H. (2016). Extracellular polymeric substances facilitate the biosorption of phenanthrene on cyanobacteria Microcystis aeruginosa. Chemosphere. 162, 172 – 180.

Banu, J. R., Kavitha, S., Gunasekaran, M., & Kumar, G. (2020). Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis. Bioresource technology, 302, 122822.

Bastiaens, L., Van Roy, S., Thomassen, G., & Elst, K. (2017). Biorefinery of algae: Technical and economic considerations. In Microalgae-based biofuels and bioproducts (pp. 327-345). Woodhead Publishing.

Bezerra, B. G. P., da Silva Oliveira, I. K., da Costa, V. A., da Silva, D. R., & Pergher, S. B. C. (2016). Remoção de metais tóxicos de água produzida empregando zeolita.

Bhati, R., & Mallick, N. (2016). Carbon dioxide and poultry waste utilization for production of polyhydroxyalkanoate biopolymers by Nostoc muscorum Agardh: a sustainable approach. Journal of applied phycology, 28(1), 161-168.

Bolatkhan, K., Sadvakasova, A. K., Zayadan, B. K., Kakimova, A. B., Sarsekeyeva, F. K., Kossalbayev, B. D., Allakhverdiev, S. I. (2020). Prospects for the creation of a waste-free technology for wastewater treatment and utilization of carbon dioxide based on cyanobacteria for biodiesel production. Journal of Biotechnology.

Bozlaker, A., Muezzinoglu, A., & Odabasi, M. (2008). Atmospheric concentrations, dry deposition and air–soil exchange of polycyclic aromatic hydrocarbons (PAHs) in an industrial region in Turkey. Journal of Hazardous Materials, 153(3), 1093-1102.

Brasil. Conselho Nacional de Meio Ambiente. (2007) Resolução nº 393 de 8 de agosto 2007. Dispõe sobre o descarte contínuo de água de processo ou de produção em plataformas marítimas de petróleo e gás natural, e dá outras providências. Diário Oficial da União, Brasília, DF, 9 de agosto de 2007.

Chan, S. M. N., Luan, T., Wong, M. H., & Tam, N. F. Y. (2006). Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environmental Toxicology and Chemistry, 25(7), 1772–1779. https://doi.org/10.1897/05-354R.1

Chen, C. Y., Zhao, X. Q., Yen, H. W., Ho, S. H., Cheng, C. L., Lee, D. J., & Chang, J. S. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1-10.

Chen, F. (1996). High cell density culture of microalgae in heterotrophic growth. Trends in biotechnology, 14(11), 421-426.

Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., Lee, D. J., & Chang, J. S. (2017). Microalgae biorefinery: high value products perspectives. Bioresource technology, 229, 53-62.

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology advances, 25(3), 294-306.

Chu, F., Chu, P., Cai, P., Li, W., Lam, P. K. S. & Zeng, R. J. (2013). Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresource Technology, 134, 341-346.

Collins, L., Alvarez, D., & Chauhan, A. (2014). Phycoremediation Coupled with Generation of Value-Added Products. In Microbial Biodegradation and Bioremediation (pp. 341-387). Elsevier.

Costa, S. S., Miranda, A. L., de Jesus Assis, D., Souza, C. O., de Morais, M. G., Costa, J. A. V., & Druzian, J. I. (2018). Efficacy of Spirulina sp. polyhydroxyalkanoates extraction methods and influence on polymer properties and composition. Algal research, 33, 231-238.

Costa, S. S., Miranda, A. L., de Morais, M. G., Costa, J. A. V., & Druzian, J. I. (2019). Microalgae as source of polyhydroxyalkanoates (PHAs)—A review. International journal of biological macromolecules, 131, 536-547.

da Fontoura Prates, D., Radmann, E. M., Duarte, J. H., de Morais, M. G., & Costa, J. A. V. (2018). Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresource technology, 256, 38-43.

Danouche, M., Ghachtouli, N., & Arroussi, H. (2021). Phycoremediation mechanisms of heavy metals using living green microalgae_ physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 7. https://doi.org/10.1016/j.heliyon.2021.e07609

Das, P., AbdulQuadir, M., Thaher, M., Khan, S., Chaudhary, A. K., Alghasal, G., & Al-Jabri, H. M. S. (2019). Microalgal bioremediation of petroleum-derived low salinity and low pH produced water. Journal of Applied Phycology, 31(1), 435-444.

de Farias Silva, C. E., Barbera, E., & Bertucco, A. (2019). Biorefinery as a promising approach to promote ethanol industry from microalgae and cyanobacteria. In Bioethanol production from food crops (pp. 343-359). Academic Press.

de Oliveira, D. T., Vasconcelos, C. T., Feitosa, A. M. T., Aboim, J. B., de Oliveira, A. D. N., Xavier, L. P., ... & do Nascimento, L. A. S. (2018). Lipid profile analysis of three new Amazonian cyanobacteria as potential sources of biodiesel. Fuel, 234, 785-788.

Deprá, M. C., dos Santos, A. M., Severo, I. A., Santos, A. B., Zepka, L. Q., & Jacob-Lopes, E. (2018). Microalgal biorefineries for bioenergy production: can we move from concept to industrial reality?.BioEnergy Research, 11(4), 727-747.

Deviram, G., Mathimani, T., Anto, S., Ahamed, T. S., Ananth, D. A., & Pugazhendhi, A. (2020). Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. Journal of Cleaner Production, 253, 119770.

Di Caprio, F., Altimari, P., Iaquaniello, G., Toro, L., & Pagnanelli, F. (2019). Heterotrophic cultivation of T. obliquus under non-axenic conditions by uncoupled supply of nitrogen and glucose. Biochemical Engineering Journal, 145, 127-136.

Dos Santos, A. M., Vieira, K. R., Zepka, L. Q., & Jacob-Lopes, E. (2019). Environmental applications of microalgae/cyanobacteria. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 47-62). Elsevier.

Douben, P. E. (Ed.). (2003). PAHs: an ecotoxicological perspective. John Wiley & Sons.

Dyhrman, S. T. (2016). Nutrients and Their Acquisition: Phosphorus Physiology in Microalgae. Springer International Publishing, 155-183.

El-Sheekh, M. M., & Hamouda, R. A. (2014). Biodegradation of crude oil by some cyanobacteria under heterotrophic conditions. Desalination and Water Treatment, 52(7-9), 1448-1454.

Erbland, P., Caron, S., Peterson, M., & Alyokhin, A. (2020). Design and performance of a low-cost, automated, large-scale photobioreactor for microalgae production. Aquacultural Engineering, 90, 1.

Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. Editora Artes Médicas.

Fasahati, P., Wu, W., & Maravelias, C. T. (2019). Process synthesis and economic analysis of cyanobacteria biorefineries: A superstructure-based approach. Applied Energy, 253, 113625.

Fernández, F. G. A., Fernández-Sevilla, J. M., Moya, B. L., & Grima, E. M. (2020). Microalgae production systems. In Handbook of Microalgae-Based Processes and Products (pp. 127-163). Academic Press.

Fernández, F. G. A., Reis, A., Wijffels, R. H., Barbosa, M., Verdelho, V., Lhamas, B. (2020). The role of microalgae in the bioeconomy. Nova biotecnologia. https://doi.org/10.1016/j.nbt.2020.11.011

Ferraro, A., Massini, G., Miritana, V. M., Panico, A., Pontoni, L., Race, M., Rosa, S., Signorini, A., Fabbricino, M., & Pirozzi, F. (2021). Bioaugmentation strategy to enhance polycyclic aromatic hydrocarbons anaerobic biodegradation in contaminated soils. Chemosphere, 275, 130091. https://doi.org/10.1016/j.chemosphere.2021.130091

García de Llasera, M. P. Santiago, M. L. Flores, E. J. L. Toris, D. N. B. Herrera, M. R. C. (2018). Mini-bioreactors with immobilized microalgae for the removal of benzo(a)anthracene and benzo(a)pyrene from water. Ecological Engineering. 121, 89 – 98.

García, G., Sosa-Hernández, J. E., Rodas-Zuluaga, L. I., Castillo-Zacarías, C., Iqbal, H., & Parra-Saldívar, R. (2021). Accumulation of PHA in the microalgae Scenedesmus sp. under nutrient-deficient conditions. Polymers, 13(1), 131.

Ghasemi, Y., Rasoul-Amini, S., & Fotooh-Abadi, E. (2011). The biotransformation, biodegradation, and bioremediation of organic compounds by microalgae. Journal of Phycology, 47(5), 969–980. https://doi.org/10.1111/j.1529-8817.2011.01051.x

Hammed, A. M., Prajapati, S. K., Simsek, S., & Simsek, H. (2016). Growth regime and environmental remediation of microalgae. Algae, 31(3), 189-204.

Holzinger, A., & Karsten, U. (2013). Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Frontiers in plant science, 4, 327.

Hopkins, T. C., Graham, E. J. S., & Schuler, A. J. (2019). Biomass and lipid productivity of Dunaliella tertiolecta in a produced water-based medium over a range of salinities. Journal of Applied Phycology, 31(6), 3349-3358.

Hossain, M. F., Ratnayake, R. R., Mahbub, S., Kumara, K. W., & Magana-Arachchi, D. N. (2020). Identification and culturing of cyanobacteria isolated from freshwater bodies of Sri Lanka for biodiesel production. Saudi Journal of Biological Sciences, 27(6), 1514-1520.

Igunnu, E. T., & Chen, G. Z. (2014). Produced water treatment technologies. International Journal of Low-Carbon Technologies, 9(3), 157-177.

Jeyakumar, B., Asha, D., Varalakshmi, P., & Kathiresan, S. (2020). Nitrogen repletion favors cellular metabolism and improves eicosapentaenoic acid production in the marine microalga Isochrysis sp. CASA CC 101. Algal Research, 47, 101877.

Ji, M., Abou-Shanab, R. A.I., Kim, S., Salama, E., Lee, S., Kabra, A. N., Lee, Y., Hong, S., Jeon, B. (2013). Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecological Engineering, 58, 142-148.

Jiménez, S., Micó, M. M., Arnaldos, M., Medina, F., & Contreras, S. (2018). State of the art of produced water treatment. Chemosphere, 192, 186-208.

Johnson, T. J., Katuwal, S., Anderson, G. A., Gu, L., Zhou, R., & Gibbons, W. R. (2018). Photobioreactor cultivation strategies for microalgae and cyanobacteria. Biotechnology progress, 34(4), 811-827.

Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene. International Biodeterioration and Biodegradation, 45(1–2), 57–88. https://doi.org/10.1016/S0964-8305(00)00052-4

Kabyl, A., Yang, M., Abbassi, R., & Li, S. (2020). A risk-based approach to produced water management in offshore oil and gas operations. Process safety and Environmental protection, 139, 341-361.

Kamravamanesh, D., Lackner, M., & Herwig, C. (2018). Bioprocess engineering aspects of sustainable polyhydroxyalkanoate production in cyanobacteria. Bioengineering, 5(4), 111

Khola, G., & Ghazala, B. (2012). Biodiesel production from algae. Pak. J. Bot, 44(1), 379-381.

Kumar, D., & Goud, V. V. (2021). 12 Lifecycle assessment of microalgal biorefinery. Algal Biorefinery: Developments, Challenges and Opportunities, 293.

Kwon, M. H., & Yeom, S. H. (2015). Optimization of one-step extraction and transesterification process for biodiesel production from the marine microalga Nannochloropsis sp. KMMCC 290 cultivated in a raceway pond. Biotechnology and Bioprocess Engineering, 20(2), 276–283.

Lam, M. K., Yussof, M. I., Uemura, Y., Lim, J. W., Khoo, C. G., Lee, K. T. & Ong, H.C. (2017). Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies. Renewable Energy, 103, 197-207.

Lei, A. P., Hu, Z. L., Wong, Y. S., & Tam, N. F. Y. (2007). Removal of fluoranthene and pyrene by different microalgal species. Bioresource Technology, 98(2), 273–280. https://doi.org/10.1016/j.biortech.2006.01.012

Leong, H. Y., Chang, C. K., Khoo, K. S., Chew, K. W., Chia, S. R., Lim, J. W., Chang, J. S., & Show, P. L. (2021). Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues. Biotechnology for Biofuels, 14(1), 1-15.

Li, X., Xu, H., & Wu, Q. (2007). Large‐scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnology and bioengineering, 98(4), 764-771.

Lourenço, S. O. (2006). Cultivo de microalgas marinhas: princípios e aplicações (Vol. 1). São Carlos: RiMa.

Lowrey, J., Brooks, M. S., & McGinn, P. J. (2014). Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges—a critical review. Journal of Applied Phycology, 27(4), 1485–1498.

Lu, L., Wang, J., Yang, G., Zhu, B., & Pan, K. (2017). Heterotrophic growth and nutrient productivities of Tetraselmis chuii using glucose as a carbon source under different C/N ratios. Journal of Applied Phycology, 29(1), 15-21.

Lu, Q., Zhou, W., Min, M., Ma, X., Chandra, C., Doan, Y. T. & Ruan, R. (2015). Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production. Bioresource technology, 198, 189-197.

Luo, L., Wang, P., Lin, L., Luan, T., Ke, L., & Tam, N. F. Y. (2014). Removal and transformation of high molecular weight polycyclic aromatic hydrocarbons in water by live and dead microalgae. Process Biochemistry, 49(10), 1723-1732.

Lutzu, G. A., Ciurli, A., Chiellini, C., Di Caprio, F., Concas, A., & Dunford, N. T. (2020). Latest developments in wastewater treatment and biopolymer production by microalgae. Journal of Environmental Chemical Engineering, 104926.

Mallick, S., Chakraborty, J., & Dutta, T. K. (2011). Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: A review. Critical Reviews in Microbiology, 37(1), 64–90. https://doi.org/10.3109/1040841X.2010.512268.

Markou, G. & Georgakakis, D. (2011). Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review. Applied Energy, 88, 3389-3401.

Marques, I. M., Melo, N. R., Oliveira, A. C. V., Moreira, Ícaro T. A. (2020) Bioremediation of urban river wastewater using Chlorella vulgaris microalgae to generate biomass with potential for biodiesel production. Research, Society and Development. 9 (7) p. 823974882 DOI: 10.33448/rsd-v9i7.4882.

Marques, I. M., Oliveira, A. C. V., Oliveira, O. M. C., Sales, E. A. & Moreira, I. T. A. (2021). A photobioreactor using Nannochloropsis oculata marine microalgae for removal of polycyclic aromatic hydrocarbons and sorption of metals in produced water. Chemosphere, 281.

Mendhulkar, V. D., & Shetye, L. A. (2017). Synthesis of biodegradable polymer polyhydroxyalkanoate (PHA) in cyanobacteria Synechococcus elongates under mixotrophic nitrogen-and phosphate-mediated stress conditions. Industrial Biotechnology, 13(2), 85-93.

Miao, M., Yao, X., Shu, L., Yan, Y., Wang, Z., Li, N., Cui, X., Lin, Y. & Kong, Q. (2016). Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with synthetic domestic wastewater. Int. Biodeterior. International Biodeterioration & Biodegradation, 1-6.

Miranda, V. J. M. de. (2008). Degradação de naftaleno, fenantreno e benzo(a)pireno em solos e sedimentos de ambientes costeiros, oceânicos e antárticos, 53.

Morales-Jiménez, M., Gouveia, L., Yáñez-Fernández, J., Castro-Muñoz, R., & Barragán-Huerta, B. E. (2020). Production, preparation and characterization of microalgae-based biopolymer as a potential bioactive film. Coatings, 10(2), 120.

Morales-Sánchez, D., Martinez-Rodriguez, O. A., Kyndt, J., & Martinez, A. (2014). Heterotrophic growth of microalgae: metabolic aspects. World Journal of Microbiology and Biotechnology, 31(1), 1–9.

Morales-Sánchez, D., Tinoco-Valencia, R., Kyndt, J., & Martinez, A. (2013). Heterotrophic growth of Neochloris oleoabundans using glucose as a carbon source. Biotechnology for biofuels, 6(1), 1-13.

Moreira, Í. T. A, Marques, I. M. (2019). Biorremediação de áreas costeiras impactadas por petróleo. Seminário Estudantil de Produção Acadêmica. 18, 132- 156.

Moreira, I. T. A., Oliveira, O. M. C., Azwell, T., Queiroz, A. F. S., Nano, R. M. W., Souza, E. S., Anjos, J. A. S. A., Assunção, R. V. & Guimarães, L. M. (2016). Strategies of bioremediation for the degradation of petroleum hydrocarbons in the presence of metals in mangrove simulated. CLEAN–Soil, Air, Water, 44(6), 631-637.

Murwanashyaka, T., Shen, L., Yang, Z., Chang, J. S., Manirafasha, E., Ndikubwimana, T., Chen, C., & Lu, Y. (2020). Kinetic modelling of heterotrophic microalgae culture in wastewater: Storage molecule generation and pollutants mitigation. Biochemical Engineering Journal, 157, 107523.

Mustafa, S., Bhatti, H. N., Maqbool, M., & Iqbal, M. (2021). Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: Prospects, challenges and opportunities. Journal of Water Process Engineering, 41(March), 102009. https://doi.org/10.1016/j.jwpe.2021.102009

Neilson, A. H., & Lewin, R. A. (1974). The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia, 13(3), 227-264.

Nie, J., Sun, Y., Zhou, Y., Kumar, M., Usman, M., Li, J., Shao, J., Wang, L., & Tsang, D. C. W. (2020). Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.136080

Ofman, P., Skoczko, I., & Włodarczyk-Makuła, M. (2021). Biosorption of LMW PAHs on activated sludge aerobic granules under varying BOD loading rate conditions. Journal of Hazardous Materials, 418(June), 126332. https://doi.org/10.1016/j.jhazmat.2021.126332

Oliveira, O. M. C., Queiroz, A. F. S., Cerqueira, J. R., Soares, S. A R., Garcia, K. S., Filho, A. P., Rosa, M. L. S., Suzart, C. M., Pinheiro, L. L. & Moreira, I. T. A. (2020) Environmental disaster in the northeast coast of Brazil: Forensic geochemistry in the identification of the source of the oily material. Marine Pollution Bulletin, 160, 111597.

Parmar, A., Singh, N. K., Pandey, A., Gnansounou, E., & Madamwar, D. (2011). Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresource technology, 102(22), 10163-10172.

Perez‐Garcia, O., Bashan, Y., & Esther Puente, M. (2011). Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella vulgaris 1. Journal of phycology, 47(1), 190-199.

Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45(1), 11–36.

Pignolet, O. et al. (2013). Highly valuable microalgae: biochemical and topological aspects. J. Ind Microbiol Biotechnol. 40, 781-796.

Pollard, T. D., Earnshaw, W. C., Lippincott-Schwartz, J., & Johnson, G. (2016). Cell biology E-book. Elsevier Health Sciences.

Posten, C., & Chen, S. F. (Eds.). (2016). Microalgae biotechnology.

Procházková, G. Brányiková, I., Zachleder, V. & Brányik, T. (2014). Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. Springer Science. DOI 10.1007/s10811-013-0154-9.

Rahman, A., Agrawal, S., Nawaz, T., Pan, S., & Selvaratnam, T. (2020). A Review of Algae-Based Produced Water Treatment for Biomass and Biofuel Production. Water, 12(9), 2351.

Rempel, A., Gutkoski, J. P., Nazari, M. T., Biolchi, G. N., Cavanhi, V. A. F., Treichel, H., & Colla, L. M. (2021). Current advances in microalgae-based bioremediation and other technologies for emerging contaminants treatment. Science of the Total Environment, 772, 144918. https://doi.org/10.1016/j.scitotenv.2020.144918

Romero, D. V., Cordero, A. P., & Garizado, Y. O. (2018). Biodegradation activity of crude oil by Chlorella sp. under mixotrophic conditions. Indian J Sci Technol, 11, 1-8.

Rueda, E., García-Galán, M. J., Ortiz, A., Uggetti, E., Carretero, J., García, J., & Díez-Montero, R. (2020). Bioremediation of agricultural runoff and biopolymers production from cyanobacteria cultured in demonstrative full-scale photobioreactors. Process Safety and Environmental Protection, 139, 241-250.

Salvador, R. Puglieri, F. N. Halog, A. Andrade, F. G. Piekarski, C. M. Francisco, A. C. (2021). Key aspects for designing business models for a circular bioeconomy. Journal of Cleaner Production. 278, 124341.

Sankaran, R., Show, P. L., Nagarajan, D., & Chang, J. S. (2018). Exploitation and biorefinery of microalgae. In Waste Biorefinery (pp. 571-601). Elsevier.

Satyanarayana, K. G., Mariano, A. B., & Vargas, J. V. C. (2011). A review on microalgae, a versatile source for sustainable energy and materials. International Journal of energy research, 35(4), 291-311.

Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O., & Hankamer, B. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy research, 1(1), 20-43.

Sharma, N. K., Rai, A. K., & Stal, L. J. (2013). Cyanobacteria: an economic perspective. John Wiley & Sons.

Shih, P. M. (2018). Towards a sustainable bio-based economy: redirecting primary metabolism to new products with plant synthetic biology. Plant Science, 273, 84-91

Shrivastav, A., Mishra, S. K., & Mishra, S. (2010). Polyhydroxyalkanoate (PHA) synthesis by Spirulina subsalsa from Gujarat coast of India. International journal of biological macromolecules, 46(2), 255-260.

Silva, C. S. P., Silva-Stenico, M. E., Fiore, M. F., de Castro, H. F., & Da Rós, P. C. M. (2014). Optimization of the cultivation conditions for Synechococcus sp. PCC7942 (cyanobacterium) to be used as feedstock for biodiesel production. Algal Research, 3, 1-7.

Silva, M. M., Leao, D. J., Moreira, I. T. A., Oliveira, O. M. C., Queiroz, A. F. S. & Ferreira, S. L. C. (2015). Speciation analysis of inorganic antimony in sediment samples from São Paulo Estuary, Bahia State, Brazil. Environmental Science and Pollution Research, 22, 8386-8391.

Singh, A. K., Sharma, L., Mallick, N., & Mala, J. (2017). Progress and challenges in producing polyhydroxyalkanoate biopolymers from cyanobacteria. Journal of Applied Phycology, 29(3), 1213-1232.

Singh, B. Bauddh, K. & Bux, F. (2015). Algae and environmental sustainability. Springer.

Singh, J., & Saxena, R. C. (2015). An introduction to microalgae: Diversity and significance. In Handbook of marine microalgae (pp. 11-24). Academic Press.

Singh, S. K., Kaur, R., Bansal, A., Kapur, S., & Sundaram, S. (2020). Biotechnological exploitation of cyanobacteria and microalgae for bioactive compounds. In Biotechnological Production of Bioactive Compounds (pp. 221-259). Elsevier.

Singh, V., Chaudhary, D. K., Mani, I., & Dhar, P. K. (2016). Recent advances and challenges of the use of cyanobacteria towards the production of biofuels. Renewable and Sustainable Energy Reviews, 60, 1-10.

Smith, R. T., Bangert, K., Wilkinson, S. J., & Gilmour, D. J. (2015). Synergistic carbon metabolism in a fast growing mixotrophic freshwater microalgal species Micractinium inermum. Biomass and Bioenergy, 82, 73–86.

Su, Y. (2021) Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of the Total Environment, 762, 1-14.

Subashchandrabose, S. R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2013). Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environment International, 51, 59–72.

Subramaniyan, V. (2012). Potential applications of cyanobacteria in industrial effluents-a review. Journal of Bioremediation and Biodegradation, 3(6).

Sun, Y., Yu, G., Xiao, G., Duan, Z., Dai, C., Hu, J., Wang, Y., Yang, Y., & Jiang, X. (2021). Enhancing CO2 photo-biochemical conversion in a newly-designed attached photobioreactor characterized by stacked horizontal planar waveguide modules. Science of The Total Environment, 760, 144041.

Suresh, B., & Ravishankar, G. A. (2004). Phytoremediation—a novel and promising approach for environmental clean-up. Critical reviews in biotechnology, 24(2-3), 97-124.

Sutherland, D. L., & Ralph, P. J. (2019). Microalgal bioremediation of emerging contaminants - Opportunities and challenges. Water Research. https://doi.org/10.1016/j.watres.2019.114921

Taher, H., Al-Zuhair, S., Al-Marzouqi, A. H., Haik, Y., & Farid, M. (2014). Effective extraction of microalgae lipids from wet biomass for biodiesel production. Biomass and bioenergy, 66, 159-167.

Teo, C. L., & Idris, A. (2014). Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production. Bioresource Technology, 171, 477-481.

Tibbetts, P. J. C., Buchanan, I. T., Gawel, L. J., & Large, R. (1992). A comprehensive determination of produced water composition. In Produced water (pp. 97-112). Springer, Boston, MA.

Ting, H., Haifeng, L., Shanshan, M., Zhang, Y., Zhidan, L., & Na, D. (2017). Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: A review. International Journal of Agricultural and Biological Engineering, 10(1), 1-29.

Uma, V. S., Gnanasekaran, D., Lakshmanan, U., & Dharmar, P. (2020). Survey and isolation of marine cyanobacteria from eastern coast of India as a biodiesel feedstock. Biocatalysis and Agricultural Biotechnology, 24, 101541.

USEPA, United States Environmental Protection Agency (2008). Polycyclic aromatic hydrocarbons (PAHs). Office of solid waste. Washington DC.

Vadiveloo, A., Nwoba, E. G., Ogbonna, C., & Mehta, P. (2019). Sustainable production of bioproducts from wastewater-grown microalgae. Sustain Downstream Process Microalgae Ind Appl, 7, 165.

Vázquez-Gómez, G., Rubio-Lightbourn, J., & Espinosa-Aguirre, J. J. (2016). Mecanismos De Acción Del Receptor De Hidrocarburos De Arilos En El Metabolismo Del Benzo[a]Pireno Y El Desarrollo De Tumores. Tip, 19(1), 54–67. https://doi.org/10.1016/j.recqb.2016.02.006

Verâne, J., Santos, N. C. P., Silva, V. L., Almeida, M., Oliveira, O. M. C. & Moreira, I. T. A. (2020 Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments using Rhizophora mangle. Marine Pollution Bulletin, 160, 111687.

Verma, P. S., & Agarwal, V. K. (2004). Cell Biology, Genetics, Molecular Biology, Evolution and Ecology: Evoloution and Ecology. S. Chand Publishing.

Wood, J. L., Miller, C. D., Sims, R. C., & Takemoto, J. Y. (2015). Biomass and phycocyanin production from cyanobacteria dominated biofilm reactors cultured using oilfield and natural gas extraction produced water. Algal Research, 11, 165-168.

Xin, L., Hong-ying, H., Ke, G. & Ying-Xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101, 5494-5500.

Yang, I. S., Salama, E. S., Kim, J. O., Govindwar, S. P., Kurade, M. B., Lee, M., Roh, H. S. & Jeon, B. H. (2016). Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and simultaneous nutrient removal. Energy Conversion and Management, 117, 54-62.

Yu, H., Jia, S., & Dai, Y. (2009). Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. Journal of Applied Phycology, 21(1), 127-133.

Zhai, X., Zhu, C., Zhang, Y., Pang, H., Kong, F., Wang, J., & Chi, Z. (2020). Seawater supplemented with bicarbonate for efficient marine microalgae production in floating photobioreactor on ocean: A case study of Chlorella sp. Science of The Total Environment, 738, 139439.

Zhang,C., Zhou,C., Burnap, R., & Peng, L. (2018). Carbon/Nitrogen Metabolic Balance: Lessons from Cyanobacteria. CellPress Reviews, 1-15.

Zhou, W., Lu, Q., Han, P., & Li, J. (2020). Microalgae cultivation and photobioreactor design. In Microalgae Cultivation for Biofuels Production (pp. 31-50). Academic Press.

Published

07/09/2021

How to Cite

DUARTE, I. F. .; RIBEIRO, V. de S. .; SANTOS, M. I. G. R. dos; COSTA, T. A. D. .; SANTANA, M. B. de .; OLIVEIRA, A. C. V. .; MARQUES, I. M. .; ÑAÑEZ, K. B. .; MOREIRA, Ícaro T. A. . Remediation mechanisms of polycyclic aromatic petroleum hydrocarbons using microalgae and cyanobacteria with emphasis on circular bioeconomy . Research, Society and Development, [S. l.], v. 10, n. 11, p. e512101119954, 2021. DOI: 10.33448/rsd-v10i11.19954. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19954. Acesso em: 19 apr. 2024.

Issue

Section

Review Article