Molecular electrostatic potential and pattern recognition models to design potentially active pentamidine derivatives against Trypanosoma brucei rhodesiense

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20207

Keywords:

Molecular electrostatic potential; Pattern recognition models; Investigation of pentamidine derivatives; Design of pentamidine derivatives.

Abstract

Molecular electrostatic potential (MEP) and pattern recognition (PR) were used to draw potentially active pentamidine derivatives against Trypanosome brucei rhodesiense (T. b. rhodesiense). PR models: Principal Component Analysis, PCA model; Hierarchical Cluster Analysis, HCA model; K-Nearest Neighbor, KNN model; Soft Independent Modeling of Class Analogy, SIMCA model; and Stepwise Discriminant Analysis, SDA model, were built by reducing the dimensionality of a data matrix to twenty-eight pentamidine derivatives and allowed the compounds to be classified into two classes: more active and less active, according to their degrees of activity against T. b. rhodesiense. The study outlined that the properties HOMO (highest occupied molecular orbital) energy, VOL (molecular volume), and ASA_P (water accessible surface area of all polar (½qi½³0. 2) atoms) are the most relevant for the construction of the models. The key structural features required for biological activity investigated through MEP were used as guidelines in the design of thirteen new compounds, which were evaluated by PR models as more active or less active against T. b. rhodesiense. The application of PR models indicated nine promising compounds (29, 30, 31, 32, 33, 36, 37, 39, and 40) for synthesis and biological assays.

References

Aray, Y. (2019). Nature of the active sites of molybdenum-based catalysts and their interaction with sulfur- and nitrogen-containing molecules using the quantum theory of atoms in molecules and the molecular electrostatic potential. The Journal of Physical Chemistry C, 123, 14421-14431.

Bakunova, S.M., Bakunov, S. A., Patrick, D. A., Kumar, E. V. K. S., Ohemeng, K. A., Bridges, A. S., Wenzler, T., Barszcz, T., Jones, S. K., Werbovetz, K. A., Bun, R., & Tidwell, R. R. (2009). Structure-Activity Study of Pentamidine Analogues as Antiprotozoal Agents. Journal of Medicinal Chemistry, 52 (7), 2016-2035.

Barbosa, J. P., Ferreira, J. E. V., Figueiredo, A. F., Almeida, R. C. O., Silva, O. P. P., Carvalho, J. R. C., Silva, O. P. P., Carvalho, J. R. C., Cristino, M. G. G., Ciríaco-Pinheiro, J., Vieira, J. L. F., & Serra, R. T, A. (2011). Molecular modeling and chemometric study of anticancer derivatives of artemisinin. Journal of the Serbian Chemical Society, 76 (9), 1263-1282.

Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98 (7), 5648-5652.

Beebe, K. R., Pell, R. J., & Seasholtz, M. B. (1998). Chemometrics: A pratical guide. Wiley.

Bernardinelli, G., Jefford, C. W., Marie, D., Thomson, C., & Weber, J. (1994). Computational Studies of the Structures and Properties of Potential Antimalarial Compounds Based on the 1,2,4-Trioxane Ring Structure. I. Artemisinin-like Molecules. International Journal of Quantum Chemistry: Quantum Biology Symposium, 21, 117-131.

Brown, S. D. (2017). The chemometrics revolution re-examined. Journal of Chemometrics, 31 (1), e2856. doi.org/10.1002/cem.2856

Bulat, F. A., Murray, J. S., & Politzer, P. (2021). Identifying the most energetic electrons in a molecule: The highest occupied molecular orbital and the average local ionization energy. Computational and Theoretical Chemistry, 1199, 113192.

Chirlian, L. E., & Francl, M. M. (1987). Atomic charges derived from electrostatic potentials: A detailed study. Journal of Computational Chemistry, 8 (6), 894-905.

Cristino, M. G. G., Meneses, C. C. F., Soeiro, M. M., Ferreira, J. E. V., Figueiredo, A. F., Barbosa, J. P., Almeida, R. C. O., Pinheiro, J. C., & Pinheiro, A. L. R. (2012). Computational Modeling of Antimalarial 10-Substituted Deoxoartemisinins. Journal of Theoretical and Computational Chemistry, 11 (2), 241-263.

Cruciani, G., Crivori, P., Carrupt, P.-A., & Testa, B. (2000). Molecular Fields in Quantitative Structure-Permeation Relationships: The VolSurf approach. Journal of Molecular Structure (Theochem), 503 (1-2), 17–30.

Dewar, M. J. S., Zoebisch, E.G., Healy, E. F., & Stewart, J. J. P. (1985). Development and use of quantum mechanical molecular models. 76. AMI: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 107 (13), 3902-3909.

Doleželoȧ, E., Terȧn, D., Gahura, O., Kotrbovȧ, Z., Prochȧzkovȧ, M., Keough, D., Ṧpaček, P., Hockovȧ, D., Guddat, L., & Zíkovȧ, A. (2018). Evaluation of the Trypanosoma brucei 6-oxopurine salvage pathway as a potential target for drug discovery. PloS Neglected Tropical Diseases, 12 (2), e0006301. doi.org/10.1371/journal.pntd.000630

Ferreira, M. M. C., Montanari, C. A., & Gaudio, A. C. (2002). Seleção de variáveis em QSAR. Quim Nova, 25 (3), 439-448.

Ferreira, M. M. C. (2015). Químiometria: Conceitos, Métodos e Aplicações. Campinas: Editora UNICAMP.

Franco, J. R., Cecchi, G., Priotto, G., Paone, M., Diarra, A., Grout, L., Simarro, P. P., Zhao, W., & Argaw, D. (2018). Monitoring the elimination of human African trypanosomiasis: Update to 2016. PLoS Neglected Tropical Diseases 12 (12), e0006890. doi.org/10.1371/journal.pntd.0006890

Franco, J. R., Cecchi, G., Priotto, G., Paone, M., Diarra, A., Grout, L., Simarro, P. P., Zhao, W., & Argaw, D. (2020). Monitoring the elimination of human African trypanosomiasis at continental and country level: Update to 2018. PLoS Neglected Tropical Diseases 14 (5), e0008261. doi. org/10.1371/journal.pntd.0008261

Frisch, A., & Frisch, M. J. (1998). Gaussian 98 User 'S Reference, revision A. 7. Gaussian, Inc.

Fukui, K. (1997). Frontier Orbitals and Reaction Paths. Singapore: World Scientific.

Gangwal, R. P., Damre, M. V., & Sangamwar, A. T. (2016). Overwiew and recent advances in QSAR studies. In A. G. Mercader, P. R. Duchwicz & P. M. Sivakumar (Eds.), Chemometics Applications and Research. QSAR in Medicinal Chemistry (pp. 1-32).: Apple Academic Press.

Ghosal, S., Bhattacharyya, R., & Majumder, M. (2020). Impact of complete lockdown on total infection and death rates: A hierarchical cluster analysis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14 (4), 707-711.

Grisoni, F., Consonni V., & Todeschini R. (2018). Computational Chemogenomics: Methods in Molecular Biology. In J. Brown (Ed.), Impact of Molecular Descriptors on Computational Models (pp. 171-209). Humana Press.

He, H., Han, Na., Ji, C., Zhao, Y., Hu, S., Kong, Q.,Ye, J., Ji, A., & Sun, Q. (2020). Identification of five types of forensic body fluids based on stepwise discriminant analysis. Forensic Science International: Genetics, 48, 102330. doi.org/10.1016/j.fsigen.2020.102337

Hehre, W. J., Radom, L., Schleyer. P. v. R., & Pople, J. Á. (1986). Ab Initio Molecular Theory. Wiley.

Holmes, P. (2015). On the Road to Elimination of Rhodesiense Human African Trypanosomiasis: First WHO Meeting of Stakeholders. PLoS. Neglected Tropical Disseases, 9 (4), e0003571. 10.1371/journal.pntd.0003571

Hyperchem, Inc. (2008). ChemPlus: Modular Extensions to HyperChem Release 8.06, Molecular Modeling for Windows. Gainesville.

Infometrix, Inc (2002) Pirouette 3.01. Woodinville.

Jefford, C. W., Grigorov, M., Weber. J., Lüthi, H. P., & Troncher, J. M. J. (2000). Correlating the Molecular Electrostatic Potentials of Some Organic Peroxides with Their Antimalarial Activities. Journal of Chemical Information and Computer Sciences, 40 (2), 354–357.

Johnson, R. A., & Wichem, D. W. (1992). Applied Multivariate Statistical Analysis. Prentice-Hall.

Karelson, M., Lobanov, V. S., & Katrizky, A. R. (1996). Quantum-Chemical Descriptors in QSAR/QSPR Studies. Chemical Reviews, 96 (3), 1027-1042.

Kowalski, B. R., & Brender, C. F. (1972). Pattern Recognition. A Powerful Approach to Interpreting Chemical Data. Journal of the American Chemical Society 94 (16), 5632-5639.

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37 (2), 785–789.

Mehmood, A., Jones, S. I., Tao, P., & Janesko, B. J. (2018). An orbital-overlap complement to ligand and binding site electrostatic potential maps. Journal of Chemical Information and Modeling,58 (9), 1836-1846.

Politzer, P., Laurence, P. R., & Jayasuriya, K. (1985). Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environmental Health Perspectives, 61, 191-202.

Politzer, P., Murray, J. S. & Clark, T. (2019). Explicit inclusion of polarizing electric fields in σ-and π-hole interactions. The Journal of Physical Chemistry A, 123 (46), 10123-10130.

Politzer, P., & Murray, J. S. (2021). Electrostatic potentials at the nuclei of atoms and molecules. Theoretical Chemistry Accounts140 (7). doi.org/10.1007/s00214-020-02701-0

Politzer, P. & Murray, J. S. (2021). Chemical Reactivity in Confined Systems: Theory, Modelling and Applications. In P. K. Chattaraj & D. Chakraborty (Eds.), Molecular Electrostatic Potentials: Significance and Applications (pp. 113-134).: Wiley.

Roothaan, C. C. (1951). New developments in molecular orbital theory. Reviews of Modern Physics, 23 (2), 69-89.

Rzesikowska, K., Krawczuk, A., & Kalinowska-Tluscik, J. (2019). Electrostatic potential and non-covalent interactions analysis for the design of selective 5-

HT7ligands. Journal of Molecular Graphics and Modelling, 91, 130-139. doi.org/10.1016/j.jmgm.2019.06.007

Santos, M. A. B., Oliveira, L. F. S., Figueiredo, A. F., Gil, F. S., Farias, M. S., Bitercourt, H. R., Lobato, J. R. B., Farreira, R. D. P., Alves, S. S. S., Aquino, E. L. C., & Ciríaco-Pinheiro, J. (2020). Molecular Electrostatic Potential and Chemometric Techniques as Tools to Design Bioactive Compounds. In A. Stefaniu, A. Rasul, & G. Hussain (Eds.), Cheminformatics and its Applications (pp. 1-27). Londom: IntechOpen.

Scrocco, E., & Tomasi, J. (1978). Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials.Advences in Quantum Chemistry, 11, 115–193.

Selby, R., Wamboga, C., Erphas, O., Mugenyi, A., Jamonneau, V. Waiswa, C. Torr, S. J., & Lehane, M. (2019). Gambian human African Trypanosomiasis in North West Uganda. Are we on course for the 2020 target? PLoS Neglected Tropical Diseases, 13 (8), e0007550. doi. org/10.1371/journal.pntd.0007550

Singh, U. C., & Kollman, P. A. (1984). An approach to computing electrostatic charges for molecules. Journal of Computational Chemistry,5 (2), 129-145.

Srikrishnan, T., De, N. C., Alam, A. S., & Kapoor, J. (2004). Crystal and molecular structure of pentamidine diisethionate: an anti-protozoal drug used in AIDS related pneumonia. Journal of Chemical Crystallography, 34 (11), 813-818.

Stanton, D. & Jurs, P. (1990). Development and Use of Charged Partial Surface-Area Structural Descriptors in Computer-Assisted Quantitative Structure-Property Relationship Studies. Analytical Chemistry 62 (21), 2323–2329.

Todeschini, R., & Consonni, V. (2009). Molecular Descriptors for Chemoinformatics. Wiley-VCH.

Varmuza, K. (1980). Pattern Recognition in Chemistry. Springer-Verlog.

Varmuza, K. (2018). Methods for multivariate data analysis. In: T. Engel, & J. Gasteiger (Eds). Chemoinformatics - Basic Concepts and Methods (pp. 339-437). Wiley-VCH. Weinheim.

Vidal, R., Ma, Y., & Sastry, S. S. (2016). Generalized Principal Component Analysis. Springer.

Williams, D. E., & Yan, J. M. (1998). Point-Charge Models for Molecules Derived from Least-Squares Fitting of the Electric Potential. Advances in Atomic and Molecular Physics, 23, 87-130.

World Health Organization. (2019). Human African Trypanosomiasis. http://www. who.int/trypanosomiasis_african/en/

Wu, X., Thiel, W., Pezeshki, S., & Lin, H. (2013). Specific Reaction Path Hamiltonian for Proton Transfer in Water: Reparameterized Semiempirical Models. Journal of Chemical Theoretical and Computattional, 9 (6), 2672-2686.

Zhang, L.-X., Sun, Y., Zhao, H., Zhu, N., Sun, X.-D., Jin, X., Zou, A.-M., Mi, Y., & Xu, J.- R. (2017). A Bayesian Stepwise Discriminant Model for Predicting Risk Factors of Preterm Premature Rupture of Membranes: A Case-control Study. Chinese Medical Journal, 130 (20), 2416-22. 10.4103/0366-6999.216396

Downloads

Published

19/09/2021

How to Cite

OLIVEIRA, L. F. S. de .; CORDEIRO, H. C. .; BRITO, H. G. de .; PINHEIRO, A. C. B. .; SANTOS, M. A. B. dos .; BITENCOURT, H. R.; FIGUEIREDO, A. F. de .; ARAÚJO, J. de J. O. .; GIL, F. dos S. .; FARIAS, M. de S. .; BARBOSA, J. P. .; PINHEIRO, J. C. Molecular electrostatic potential and pattern recognition models to design potentially active pentamidine derivatives against Trypanosoma brucei rhodesiense. Research, Society and Development, [S. l.], v. 10, n. 12, p. e261101220207, 2021. DOI: 10.33448/rsd-v10i12.20207. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20207. Acesso em: 20 feb. 2024.

Issue

Section

Exact and Earth Sciences