Isotopic analysis in teeth of contemporary brazilians with known diet and geolocation and its forensic value for human identification

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20243

Keywords:

Human identification; Stable isotopes; Strontium isotopes; Diet; Geographic location; Forensic anthropology.

Abstract

Dental anthropological data may provide valuable information about an individual's life, including age at death, health, signs of violence, ancestry, diet features, intentional modifications, and geographic origin. These pieces of information may be further detailed by diet and residential mobility estimates provided by isotopic analyses. The use of isotope data in the modern population is strongly dependent on the diverse origin of food supply, thus requiring an updated and location-specific database. In this study, we have analyzed the isotopic ratio of strontium, carbon, and nitrogen in enamel and dentin collagen of third molars individuals from three main cities in Brazil. Besides the isotope data, we have also surveyed their diet in adolescence habits to develop models to be applied for forensic studies in the Brazilian territory. We show that the forensic value of the place of origin estimation based 87Sr/86Sr levels is reduced in these highly urbanized samples. Among the outliers, most individuals are older than the mean age (25.1) or had water from wells in childhood. The sample's diet has a robust C4 presence and mean trophic levels consistent with the declared high frequency of chicken, meat, and dairy products, also compatible with the high consumption of sugar, rice, and beans in the local culture. Individuals with special diets, either by choice or therapeutic needs, were potential outliers among the group. Our results also contribute to the international human tissues isotopic database and can contribute for human identification of Brazilians or foreigners with distinct isotopic signatures.

References

Alkass, K., Buchholz, B. A., Druid, H. & Spalding, K. L. (2011). Analysis of 14C and 13C in teeth provides precise birth dating and clues to geographical origin. Forensic Sci. Int., 209, 34–41. https://doi.org/10.1016/j.forsciint.2010.12.002.

Alkass, K., Saitoh, H., Buchholz, B. A., et al. (2013). Analysis of radiocarbon, stable isotopes and DNA in teeth to facilitate identification of unknown decedents. PLoS ONE, 8(e69597). https://doi.org/10.1371/journal.pone.0069597.

Ambrose, S. H. (1990). Preparation and characterization of bone and tooth collagen for isotopic analysis, Journal of Archaeological Science, 17(4): 431-451. https://doi.org/10.1016/0305-4403(90)90007-R.

Bastos, M. Q. R. (2009). Mobilidade Humana no Litoral Brasileiro: análise de isótopos de estrôncio no sambaqui do Forte Marechal Luz. [Master´s thesis, FIOCRUZ].

Bastos, M. Q. R., Santos, R. V., Souza, S. M. F. M., Rodrigues-Carvalho, C., Tykot, R. H., Cook, D. C. & Santos, R. V. (2016). Isotopic study of geographic origins and diet of enslaved Africans buried in two Brazilian cemeteries. Journal of Archaeological Science, 70: 82–90.

Bastos, M. Q. R., Santos, R. V., Tykot, R. H., Mendonça de Souza, S. M. F., Rodrigues-Carvalho, C. & Lessa, A. (2015). Isotopic evidences regarding migration at the archeological site of Praia da Tapera: New data to an old matter. J. Archaeol. Sci. Rep. 4, 588–595. https://doi.org/10.1016/j.jasrep.2015.10.028.

Beaumont, J. & Montgomery J. (2016). The Great Irish Famine: Identifying Starvation in the Tissues of Victims Using Stable Isotope Analysis of Bone and Incremental Dentine Collagen. PLoS ONE. 11: e0160065. https://doi.org/10.1371/journal.pone.0160065.

Beaumont, J., Geber, J., Powers, N., Wilson, A., Lee-Thorp, J. & Montgomery, J. (2013). Victims and survivors: Stable isotopes used to identify migrants from the Great Irish Famine to 19th century London. Am. J. Phys. Anthropol., 150: 87–98. https://doi.org/10.1002/ajpa.22179.

Benson, L., Stein, J., Taylor, H., Friedman, R. & Windes, T. C. (2006). The Agricultural Productivity of Chaco Canyon and the Source(s) of Pre-Hispanic Maize Found in Pueblo Bonito. In Staller, J.E., Tykot, R. H. & Benz, B. F. (Eds). Histories of Maize (pp. 289–314). Abingdon, UK: Routledge. https://doi.org/10.1016/B978-012369364-8/50273-4.

Bentley, R. A., Krause, R., Price, T. D. & Kaufmann, B. (2003). Human mobility at the early neolithic settlement of Vaihingen, Germany: Evidence from strontium isotope analysis. Archaeometry, 45:471–486. https://doi.org/10.1111/1475-4754.00122.

Bourbou, C., Fuller, B. T., Garvie-Lok, S. J., Richards, M. P. (2013). Nursing mothers and feeding bottles: reconstructing breastfeeding and weaning patterns in Greek Byzantine populations (6th–15th centuries AD) using carbon and nitrogen stable isotope ratios. J. Archaeol. Sci., 40: 3903–3913. https://doi.org/10.1016/j.jas.2013.04.020.

Budd P., Millard A., Chenery C., Lucy S. & Roberts C. (2004). Investigating population movement by stable isotope analysis: a report from Britain. Antiquity, 78: 127–141. https://doi.org/10.1017/S0003598X0009298X.

Burt, N. M. & Amin, M. (2014). A mini me? Arch. Oral Biol. 59: 1226–1232. https://doi.org/10.1016/j.archoralbio.2014.07.014.

Cameriere, R. Cunha, E. Wasterlain, S. N., De Luca, S. E. et al. (2013). Age estimation by pulp/tooth ratio in lateral and central incisors by peri-apical X-ray. J. Forensic Leg. Med., 20: 530–536. https://doi.org/10.1016/j.jflm.2013.02.012.

Charangowda, B. (2010). Dental records: An overview. J. Forensic Dent. Sci., 2(1), 5-10. https://doi.org/10.4103/0974-2948.71050.

Conde, W. L. & Monteiro, C. A. (2014). Nutrition transition and double burden of undernutrition and excess of weight in Brazil. Am. J. Clin. Nutr., 100: 1617S-1622S. https://doi.org/10.3945/ajcn.114.084764.

Delattre, V. F. Antemortem dental records: Attitudes and practices of forensic dentists. (2007). J. Forensic Sci., 52(2), 420–422. https://doi.org/10.1111/j.1556-4029.2006.00379.x.

Eerkens, J. W., Barfod, G. H., Jorgenson, G. A. & Peske C. (2014). Tracing the mobility of individuals using stable isotope signatures in biological tissues: “locals” and “non-locals” in an ancient case of violent death from Central California. J. Archaeol. Sci. 41, 474–481. https://doi.org/10.1016/j.jas.2013.09.014.

Faure, G. (1986). Principles of isotope geology. 2nd ed., Wiley.

Feferbaum, R., Abreu, L.C. & Leone, C. (2012). Fluid intake patterns: an epidemiological study among children and adolescents in Brazil. BMC Public Health, 12: 1005. https://doi.org/10.1186/1471-2458-12-1005.

Font, L., Jonker, G., van Aalderen, P. A., Schiltmans, E. F. & Davies, G. R. (2015). Provenancing of unidentified World War II casualties: Application of strontium and oxygen isotope analysis in tooth enamel. Sci. Justice, 55: 10–17. https://doi.org/10.1016/j.scijus.2014.02.005.

Font, L., van der Peijl, G., van Wetten, I., Vroon, P., van der Wagt, B., Davies, G. (2012). Strontium and lead isotope ratios in human hair: investigating a potential tool for determining recent human geographical movements. J. Anal. At. Spectrom. 27: 719. https://doi.org/10.1039/c2ja10361c.

Fry, B. (2006). Stable isotope ecology. New York, NY: Springer.

Gregoricka, L. A., Scott, A. B., Betsinger, T. K. & Polcyn, M. (2017). Deviant burials and social identity in a postmedieval Polish cemetery: An analysis of stable oxygen and carbon isotopes from the “vampires” of Drawsko. American Journal of Physical Anthropology, 163(4): 741-758.

Hermer, K. A., Evans, J. A., Chenery, C. A. & Lamb, A. L. (2013). Evidence of early medieval trade and migration between Wales and the Mediterranean Sea region. J. Archaeological Science, 40: 2352-2359. http://dx.doi.org/10.1016/j.jas.2013.01.014

Hillson, S. (1996). Dental Anthropology. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139170697.

Howland, M. R., Corr, L. T., Young, S. M. M., et al. (2003). Expression of the dietary isotope signal in the compound-specific? 13C values of pig bone lipids and amino acids. Int. J. Osteoarchaeol., 13:54–65. https://doi.org/10.1002/oa.658.

Juarez, C. A. (2008). Strontium and geolocation, the pathway to identification for deceased undocumented Mexican border-crossers: A preliminary report. J. Forensic Sci., 53, 46–49. https://doi.org/10.1111/j.1556-4029.2007.00610.x.

Kamenov, G. D. & Curtis, J. H. (2017). Using carbon, oxygen, strontium, and lead isotopes in modern human teeth for Forensic Investigations: A critical overview based on data from Bulgaria. J. Forensic Sci., 62:1452–1459. https://doi.org/10.1111/1556-4029.13462.

Katzenberg, M. A. (2008). Stable Isotope Analysis: A tool for studying past diet, demography, and life history. In: Katzenberg, M.A. & Saunders, S.R. (Ed). Biological Anthropology of the Human Skeleton. (2nd ed., pp. 411–441). Hoboken, NJ: John Wiley & Sons Inc. https://doi.org/10.1002/9780470245842.ch13.

Kellner, C. M. & Schoeninger, M. J. (2007). A simple carbon isotope model for reconstructing prehistoric human diet. Am. J. Phys. Anthropol., 133:1112–1127. https://doi.org/10.1002/ajpa.20618.

Knipper, C., Matthias, F., Nicklisch, et al. (2016). A Distinct Section of the Early Bronze Age Society? Stable Isotope Investigations of Burials in Settlement Pits and Multiple Inhumations of the Únĕtice Culture in Central Germany. Am. J. Phys. Anthropol., 159: 496-516.

Koussoulakou, D. S., Margaritis, L. H. & Koussoulakos, S. L. (2009). A Curriculum Vitae of Teeth: Evolution, Generation, Regeneration. Int. J. Biol. Sci., 5(3), 226–243. https://doi.org/10.7150/ijbs.5.226.

Kusaka, S., Nakano, T. Morite, W. & Nakatsukasa, M. (2012). Strontium isotope analysis to reveal migration in relation to climate change and ritual tooth ablation of Jomon skeletal remains from western Japan. Journal of Anthropological Archaeology, 31(4): 551-563. doi 10.1016/j.jaa.2012.05.004

Lee-Thorp, J. A. & van der Merwe, N. J. (1991). Aspects of the chemistry of modern and fossil biological apatites. J. Archaeol. Sci., 18: 343–354.

Levy-Costa, R. B., Sichieri, R., Pontes, N. S. & Monteiro, C. A. (2005). Disponibilidade domiciliar de alimentos no Brasil: distribuição e evolução (1974-2003). Rev. Saúde Pública, 39: 530–540. https://doi.org/10.1590/S0034-89102005000400003.

Louzada, M. L. C., Martins, A. P. B., Canella, et al. (2015). Ultra-processed foods and the nutritional dietary profile in Brazil, Rev. Saúde Pública, 49. https://doi.org/10.1590/S0034-8910.2015049006132.

Makarewicz, C. A. & Sealy, J. (2015). Dietary reconstruction, mobility, and the analysis of ancient skeletal tissues: Expanding the prospects of stable isotope research in archaeology. Journal of Archaeological Science, 56, 146-158. http://dx.doi.org/10.1016/j.jas.2015.02.035

Martinelli, L. A., Nardoto, G. B., M. A. Z. Perez et al. (2020). Carbon and Nitrogen Isotope Ratios of Food and Beverage in Brazil. Molecules, 25: 1457. 10.3390/molecules25061457

Meier-Augenstein, W. (2010). Stable isotope forensics: an introduction to the forensic application of stable isotope analysis. Oxford: Wiley-Blackwell.

Monteiro, C. A., Levy, R. B., Claro, R. M., Castro, I. R. R. & Cannon, G. (2010). Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. Public Health Nutr., 14: 5–13. https://doi.org/10.1017/S1368980010003241.

O’Connell, T. C. & Hedges, R. E. (1999). Investigations into the effect of diet on modern human hair isotopic values. Am. J. Phys. Anthropol., 108: 409–425.

Oppitz, G. (2015). Coisas que mudam: Os processos de mudança nos sítios conchíferos catarinenses e um olhar isotópico sobre o caso do sítio Armação do Sul, Florianópolis/SC. [Master´s thesis, Universidade de São Paulo].

Pretty, I. & Sweet, D. (2001). A look at forensic dentistry – Part 1: The role of teeth in the determination of human identity. Br. Dent. J., 190(7), 359–366. https://doi.org/10.1038/sj.bdj.4800972a.

Price T. D., Burton J. H., Bentley R. A. (2002). The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry, 44:117–135. https://doi.org/10.1111/1475-4754.00047.

Price, D. T., Nakamura, S., Suzuki, S., Burton, J. H. & Tiesler, V. (2014). New isotope data on Maya mobility and enclaves at Classic Copan, Honduras. Journal of Anthropological Archaeology, 36: 32-47. doi 10.1016/j.jaa.2014.02.003

Regan, L. A. (2006). Isotopic determination of region of origin in modern peoples: Applications for identification of U.S. war-dead from the Vietnam conflict. [Master’s thesis: University of Florida].

Schoeninger, M. J. & DeNiro, M. J. (1984). Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta., 48: 625–639. https://doi.org/10.1016/0016-7037(84)90091-7.

Schwarcz, H. P. & Schoeninger, M. J. (1991). Stable isotope analyses in human nutritional ecology. Am. J. Phys. Anthropol., 34: 283–321. https://doi.org/10.1002/ajpa.1330340613.

Scott, G. R. & Turner, C. G. (2000). The anthropology of modern human teeth: dental morphology and its variation in recent human populations. Cambridge Univ. Press, Cambridge.

Slater, P. A., Hedman, K. M. & Emerson, T. E. (2014). Immigrants at the Mississippian polity of Cahokia: strontium isotope evidence for population movement. Journal of Archaeological Science, 44: 117-127. http://dx.doi.org/10.1016/j.jas.2014.01.022

Souza, A. M., Pereira, R. A., Yokoo, E. M., Levy, R. B. & Sichieri, R. (2013). Most consumed foods in Brazil: National Dietary Survey 2008-2009. Rev. Saúde Pública. 47: 190s-199s. https://doi.org/https://dx.doi.org/10.1590/S0034-89102013000700005.

Warner, M. M., Plemons, A. M., Herrmann, N. P. & Regan, L. A. (2018). Refining stable oxygen and hydrogen isoscapes for the identification of human remains in Mississippi. J. Forensic Sci., 63, 395–402. https://doi.org/10.1111/1556-4029.13575.

Wright, L. E. (2012). Immigration to Tikal, Guatemala: Evidence from stable strontium and oxygen isotopes. Journal of Anthropological Archaeology, 31(3): 334-352. 10.1016/j.jaa.2012.02.001

Downloads

Published

19/09/2021

How to Cite

TINOCO, R. L. R.; BASTOS, M. Q. R. .; MACHADO, C. E. P. .; SANTOS, R. V. .; RODRIGUES-CARVALHO, C. . Isotopic analysis in teeth of contemporary brazilians with known diet and geolocation and its forensic value for human identification. Research, Society and Development, [S. l.], v. 10, n. 12, p. e238101220243, 2021. DOI: 10.33448/rsd-v10i12.20243. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20243. Acesso em: 2 jan. 2025.

Issue

Section

Health Sciences