Use of plant extracts from healthy soybean and potato plants for treatments of plants of the same species

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20351

Keywords:

Inoculum; Yield; Diseases; Seed treatment; Foliar spraying.

Abstract

The present study proposes to evaluate extracts from shoots of healthy soybean and potato plants for the treatment of plants of the same species cultivated subsequently. Two experiments were thus conducted separately after the soybean and potato inoculum production phases. For soybean, the experiment was laid out in a randomized-block design with five treatments and four replications, in which the following treatments were tested: 1. absolute control without inoculum or pesticides; 2. farmer management with pesticides, without inoculum; 3. use of inoculum, without insecticides; 4. use of inoculum, without fungicides; and 5. use of inoculum, without pesticides. In the soybean crop, the tested inoculum improved plant development and, increased the potassium content of the plant tissue as well as yield. For the potato crop, a randomized-block statistical design was adopted with two treatments and ten replications, using varieties Ágata and Atlantic. The following treatments were tested: 1. absolute control without inoculum, with pesticides; and 2. use of inoculum (foliar spraying), with pesticides. With the use of inoculum, varieties Ágata and Atlantic showed distinct responses regarding disease incidence and yield. Late blight was the disease that most affected both varieties, but only Atlantic showed a reduction in its incidence when the inoculum was applied. Variety Atlantic also exhibited an increase in the most valued commercial calibers, besides an increase in yield, with the use of the tested inoculum. Cultivar Ágata showed a marked reduction in tuber defects with the use of the inoculum on the plants.

Author Biography

Andre May, Embrapa Meio Ambiente

Pesquisador Embrapa Meio Ambiente

References

Adesemoye, A. O., Torbert, H. A., & Kloepper, J. W. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58, 921–929. https://doi.org/10.1007/s00248-009-9531-y.

Aguiar, A. T. E., Gonçalves, C., Paterniani, M. E. A. G. Z., Tucci, M. L. S., & Castro, C. E. F. (2014). Instruções agrícolas para as principais culturas econômicas. (7ª. ed.) rev. e atual. Instituto Agronômico, Campinas, p. 452 (Boletim IAC, n.200)

Andrews, J. H. (1992). Biological control in the phyllosphere. Annual review of phytopathology, 30, 603-35. https://doi.org/10.1146/annurev.py.30.090192.003131.

Bakhshandeh, E., Gholamhosseini, M., Yaghoubian, Y., & Pirdashti, H. (2020). Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress. Plant Growth Regulation, 90 (1), 123–136. 10.1007/s10725-019-00556-5.

Bakker, M. G., Manter, D. K., Sheflin, A. M., Weir, T. L., & Vivanco, J. M. (2012). Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil, 360, 1-13. https://doi.org/10.1007/s11104-012-1361-x.

Balen, A. B., Lange, A., Cavalli, E., Santos, P. H. Dos., & Cavalli, C. (2015). XXV Congresso Brasileiro de Ciência do Solo. Aplicação de Fertilizante Foliar na Cultura da Soja.

Banerjee, A., Bareh, D. A., & Joshi, S. R. (2017). Native microorganisms as potent bioinoculants for plant growth promotion in shifting agriculture (Jhum) systems. Journal of Soil Science and Plant Nutrition, 17 (1), 127–140. https://doi.org/10.4067/S0718-95162017005000010.

Bell, T. H., Yergeau, E., Martineau, C., Juck, D., Whyte, L. G., & Greer C. W. (2011). Identification of nitrogen-incorporating bacteria in petroleum-contaminated arctic soils by using [15N]DNA-based stable isotope probing and pyrosequencing. Applied and Environmental Microbiology, 77 (12), 4163–4171. https://doi.org/10.1128/AEM.00172-11.

Bender, S. F., Wagg, C., & Van Der Heijden, M. G.A. (2016). An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends in Ecology and Evolution, 31(6), 440-452 https://doi.org/10.1016/j.tree.2016.02.016.

Bloemberg, G. V., & Lugtenberg, B. J. J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology, 4(4), 343-50. https://doi.org/10.1016/S1369-5266(00)00183-7.

Boddey, R. M., & Dobereiner, J. (1995). Nitrogen fixation associated with grasses and cereals: Recent progress and perspectives for the future. Fertilizer Research, 42, 241–250. https://doi.org/10.1007/BF00750518.

Duarte, H. S. S. (2009). Resistência de cultivares de batata à requeima. Dissertação: mestrado em fitopatologia, Viçosa: UFV, p.61

Filgueira, F. A. R. (2008). Novo manual de olericultura: Agrotecnologia moderna na produção e comercialização de hortaliças. Viçosa: UFV, p. 402.

Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology, 60 (4), 579–598. https://doi.org/10.1007/s13213-010-0117-1.

Hu, X., Chen, J., & Guo, J. (2006). Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World Journal of Microbiology and Biotechnology, 22, (9), 983–990. https://doi.org/10.1007/s11274-006-9144-2.

Irikiin, Y., Nishiyama, M., Otsuka, S., & Senoo, K. (2006). Rhizobacterial community-level, sole carbon source utilization pattern affects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system. Applied Soil Ecology, 34(1), 27-32. https://doi.org/10.1016/j.apsoil.2005.12.003.

Kaminsky, L. M., Trexler, R. V., Malik, R. J., Hockett, K. L., & Bell, T. H. (2019). The Inherent Conflicts in Developing Soil Microbial Inoculants. Trends in Biotechnology, 37 (2), 140–151. 10.1016/j.tibtech.2018.11.011.

Li, S. S., Zhu, A., Benes, V., Costea, P. I., Hercog, R., Hildebrand, F., Huerta-Cepas, J., Nieuwdorp, M., Salojärvi, J., Voigt, A. Y., Zeller, G., Sunagawa, S., De Vos, W. M., & Bork, P. (2016). Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science, 352(6285), 586-589. https://doi.org/10.1126/science.aad8852.

Canteri, M. G., Althaus, R. A., Filho, J. S. V., Giglioti, E. A., & Godoy, C. V. SASM-AGRI - Sistema para análise e separação de médias em experimentos agrícolas pelos métodos scott-knott, tukey e duncan. (2001). Revista Brasileira de Agrocomputação, 1, 18–24. https://doi.org/10.1016/j.aop.2019.05.003.

Marulanda, A., Barea, J. M., & Azcón, R. (2009). Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and bacteria) from dry environments: Mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation, 28, 115-124. https://doi.org/10.1007/s00344-009-9079-6.

Masood, S., Zhao, X. Q., & Shen, R. F. (2019). Bacillus pumilus increases boron uptake and inhibits rapeseed growth under boron supply irrespective of phosphorus fertilization. AoB PLANTS, 11 (4), 1–10. https://doi.org/10.1093/aobpla/plz036.

Maurya, B. R., Meena, V. S., & Meena, O. P. (2014). Influence of inceptisol and alfisol’s potassium solubilizing bacteria (KSB) isolates on release of k from waste mica. Vegetos, 27(1), 181–187. https://doi.org/10.5958/j.2229-4473.27.1.028.

May, A., Coelho, L. F., Pedrinho, A., Batista, B. D., Mendes, L. W., Mendes, R., Morandi, M. A. B., Barth, G., Viana, R. S., & Vilela, E. S. D. (2021). The use of indigenous bacterial community as inoculum for plant growth promotion in soybean cultivation. Archives of Agronomy and Soil Science, 00, 1–16. 10.1080/03650340.2021.1964017.

Meena, K. K., Sorty, A. M., Bitla, U. M., Choudhary, K., Gupta, P., Pareek, A., Singh, D. P., Prabha, R., Sahu, P. K., Gupta, V. K., Singh, H. B., Krishanani, K. K., & Minhas, P. S. (2017). Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Frontiers in Plant Science, 8, 1–25. https://doi.org/10.3389/fpls.2017.00172.

Mendes, L. W., Tsai, S. M., Navarrete, A. A., De Hollander, M., Van, V. J. A., & Kuramae, E. E. (2015). Soil-Borne Microbiome: Linking Diversity to Function. Microbial Ecology, 70(1), 255–265. https://doi.org/10.1007/s00248-014-0559-2.

Mo, B., & Lian, B. (2011). Interactions between Bacillus mucilaginosus and silicate minerals (weathered adamellite and feldspar): Weathering rate, products, and reaction mechanisms. Chinese Journal of Geochemistry, 30(2), 187–192. https://doi.org/10.1007/s11631-011-0500-z.

Naik, K., Mishra, S., Srichandan, H., Singh, P. K., & Sarangi, P. K. (2019). Plant growth promoting microbes: Potential link to sustainable agriculture and environment. Biocatalysis and Agricultural Biotechnology, 21, 1-12. 10.1016/j.bcab.2019.101326.

Oliveira, C. O., Pinto, C. C., Garcia, A., Bettiol, J. V. T., Sá, M. E. D., & Lazarini, E. (2017). Production of soybean seeds enriched with molybdenum. Revista Ceres, 64, 282–290.

Parmar, P., & Sindhu, S. S. (2013). Potassium Solubilization by Rhizosphere Bacteria: Influence of Nutritional and Environmental Conditions. Journal of Microbiology Research, 3(1), 25–31. 10.5923/j.microbiology.20130301.04.

Pillay, V. K., & Nowak, J. (1997). lnoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Canadian Journal of Microbiology, 43, 354–361.

Qiu, Z., Egidi, E., Liu, H., Kaur, S., & Singh, B. K. (2019). New frontiers in agriculture productivity: Optimised microbial inocula and in situ microbiome engineering. Biotechnology Advances, 37(6), 1-11. 10.1016/j.biotechadv.2019.03.010.

Singh, M., Awasthi, A., Soni, S. K., Singh, R., Verma, R. K., & Kalra, A. (2015). Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth. Scientific Reports, 5, 1-8. https://doi.org/10.1038/srep15500.

Sturz, A. V. (1995). The role of endophytic bacteria during seed piece decay and potato tuberization. Plant and Soil, 175(2), 257–263. https://doi.org/10.1007/BF00011362.

Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Iqbal K., Muhammad S., Shahid, N., & Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 121, 102–117. 10.1016/j.apsoil.2017.09.030.

Töfoli, J. G., Domingues, R. J., & Ferrari, J. T. (2019). Doenças fúngicas de solo na cultura da batata: sintomas, etiologia e manejo. O Biológico, 81(1), 1–24. https://doi.org/10.31368/1980-6221v81a10017.

Trentin, R., Heldwein, A. B., Streck, N. A., Trentin, G., & Da Silva, J. C. (2013). Subperíodos fenológicos e ciclo da soja conforme grupos de maturidade e datas de semeadura. Pesquisa Agropecuaria Brasileira, 48(7), 703–713. https://doi.org/10.1590/S0100-204X2013000700002.

Wei, Z., Yang, T., Friman, V. P., Xu, Y., Shen, Q., & Jousset, A. (2015). Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nature Communications, 6, 1-9. https://doi.org/10.1038/ncomms9413.

Wubs, E. R. J., Van D. P., Wim H., Bosch, M., & Bezemer, T. M. (2016). Soil inoculation steers restoration of terrestrial Ecosystems. Nature Plants, 2, 1-5. https://doi.org/10.1038/NPLANTS.2016.107.

Yang, W., Xu, X., Li, Y., Wang, Y., Li, M., Wang, Y., Ding, X., & Chu, Z. (2016). Rutin-mediated priming of plant resistance to three bacterial pathogens initiating the early SA signal pathway. PLoS ONE, 11(1), 1-15. https://doi.org/10.1371/journal.pone.0146910.

Downloads

Published

18/09/2021

How to Cite

MAY, A.; COELHO, L. F.; SILVA, E. H. F. M. da; VIEIRA JUNIOR, N. A.; VIANA, R. da S. .; VERDIAL, M.; GONZAGA, A. R.; BORATTO, V. N. M.; BORATTO, I. V. .; CARVALHO, P. Use of plant extracts from healthy soybean and potato plants for treatments of plants of the same species. Research, Society and Development, [S. l.], v. 10, n. 12, p. e225101220351, 2021. DOI: 10.33448/rsd-v10i12.20351. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20351. Acesso em: 2 jan. 2025.

Issue

Section

Agrarian and Biological Sciences