Utilización de extractos vegetales de plantas sanas de soja y patata para tratamientos de plantas de la misma especie

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i12.20351

Palabras clave:

Inóculo; Producción; Enfermedades; Tratamiento de semillas; Spray foliar.

Resumen

El presente estudio se propone evaluar extractos de brotes sanos de plantas de soja y papa para el tratamiento de plantas de la misma especie cultivadas posteriormente. Se llevaron a cabo dos experimentos por separado después de las fases de producción de inóculo de soja y papa. Para la soja, el experimento se diseñó en bloques al azar con cinco tratamientos y cuatro repeticiones, en los que se probaron los siguientes tratamientos: 1. control absoluto sin inóculo ni pesticidas; 2. manejo de agricultores con plaguicidas, sin inóculo; 3. uso de inóculo, sin insecticidas; 4. uso de inóculo, sin fungicidas; y 5. uso de inóculo, sin pesticidas. En el cultivo de soja, el inóculo probado mejoró el desarrollo de la planta y aumentó el contenido de potasio del tejido vegetal, así como la productividad. Para el cultivo de papa se adoptó un diseño estadístico de bloques al azar con dos tratamientos y diez repeticiones, utilizando las variedades Ágata y Atlantic. Se probaron los siguientes tratamientos: 1. control absoluto sin inóculo, con plaguicidas; y 2. uso de inóculo (aspersión foliar), con plaguicidas. Con el uso del inóculo, las variedades Ágata y Atlantic mostraron diferentes respuestas en cuanto a la incidencia y productividad de la enfermedad. El tizón tardío fue la enfermedad que más afectó a ambas variedades, pero solo Atlantic mostró una reducción en su incidencia en la aplicación del inóculo. La variedad atlántica también mostró un aumento en los calibres comerciales más valorados, además de un aumento en el rendimiento, con el uso del inóculo ensayado. El cultivar Ágata mostró una marcada reducción de los defectos tuberosos con el uso de inóculo en las plantas.

Biografía del autor/a

Andre May, Embrapa Meio Ambiente

Pesquisador Embrapa Meio Ambiente

Citas

Adesemoye, A. O., Torbert, H. A., & Kloepper, J. W. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58, 921–929. https://doi.org/10.1007/s00248-009-9531-y.

Aguiar, A. T. E., Gonçalves, C., Paterniani, M. E. A. G. Z., Tucci, M. L. S., & Castro, C. E. F. (2014). Instruções agrícolas para as principais culturas econômicas. (7ª. ed.) rev. e atual. Instituto Agronômico, Campinas, p. 452 (Boletim IAC, n.200)

Andrews, J. H. (1992). Biological control in the phyllosphere. Annual review of phytopathology, 30, 603-35. https://doi.org/10.1146/annurev.py.30.090192.003131.

Bakhshandeh, E., Gholamhosseini, M., Yaghoubian, Y., & Pirdashti, H. (2020). Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress. Plant Growth Regulation, 90 (1), 123–136. 10.1007/s10725-019-00556-5.

Bakker, M. G., Manter, D. K., Sheflin, A. M., Weir, T. L., & Vivanco, J. M. (2012). Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil, 360, 1-13. https://doi.org/10.1007/s11104-012-1361-x.

Balen, A. B., Lange, A., Cavalli, E., Santos, P. H. Dos., & Cavalli, C. (2015). XXV Congresso Brasileiro de Ciência do Solo. Aplicação de Fertilizante Foliar na Cultura da Soja.

Banerjee, A., Bareh, D. A., & Joshi, S. R. (2017). Native microorganisms as potent bioinoculants for plant growth promotion in shifting agriculture (Jhum) systems. Journal of Soil Science and Plant Nutrition, 17 (1), 127–140. https://doi.org/10.4067/S0718-95162017005000010.

Bell, T. H., Yergeau, E., Martineau, C., Juck, D., Whyte, L. G., & Greer C. W. (2011). Identification of nitrogen-incorporating bacteria in petroleum-contaminated arctic soils by using [15N]DNA-based stable isotope probing and pyrosequencing. Applied and Environmental Microbiology, 77 (12), 4163–4171. https://doi.org/10.1128/AEM.00172-11.

Bender, S. F., Wagg, C., & Van Der Heijden, M. G.A. (2016). An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends in Ecology and Evolution, 31(6), 440-452 https://doi.org/10.1016/j.tree.2016.02.016.

Bloemberg, G. V., & Lugtenberg, B. J. J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology, 4(4), 343-50. https://doi.org/10.1016/S1369-5266(00)00183-7.

Boddey, R. M., & Dobereiner, J. (1995). Nitrogen fixation associated with grasses and cereals: Recent progress and perspectives for the future. Fertilizer Research, 42, 241–250. https://doi.org/10.1007/BF00750518.

Duarte, H. S. S. (2009). Resistência de cultivares de batata à requeima. Dissertação: mestrado em fitopatologia, Viçosa: UFV, p.61

Filgueira, F. A. R. (2008). Novo manual de olericultura: Agrotecnologia moderna na produção e comercialização de hortaliças. Viçosa: UFV, p. 402.

Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology, 60 (4), 579–598. https://doi.org/10.1007/s13213-010-0117-1.

Hu, X., Chen, J., & Guo, J. (2006). Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World Journal of Microbiology and Biotechnology, 22, (9), 983–990. https://doi.org/10.1007/s11274-006-9144-2.

Irikiin, Y., Nishiyama, M., Otsuka, S., & Senoo, K. (2006). Rhizobacterial community-level, sole carbon source utilization pattern affects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system. Applied Soil Ecology, 34(1), 27-32. https://doi.org/10.1016/j.apsoil.2005.12.003.

Kaminsky, L. M., Trexler, R. V., Malik, R. J., Hockett, K. L., & Bell, T. H. (2019). The Inherent Conflicts in Developing Soil Microbial Inoculants. Trends in Biotechnology, 37 (2), 140–151. 10.1016/j.tibtech.2018.11.011.

Li, S. S., Zhu, A., Benes, V., Costea, P. I., Hercog, R., Hildebrand, F., Huerta-Cepas, J., Nieuwdorp, M., Salojärvi, J., Voigt, A. Y., Zeller, G., Sunagawa, S., De Vos, W. M., & Bork, P. (2016). Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science, 352(6285), 586-589. https://doi.org/10.1126/science.aad8852.

Canteri, M. G., Althaus, R. A., Filho, J. S. V., Giglioti, E. A., & Godoy, C. V. SASM-AGRI - Sistema para análise e separação de médias em experimentos agrícolas pelos métodos scott-knott, tukey e duncan. (2001). Revista Brasileira de Agrocomputação, 1, 18–24. https://doi.org/10.1016/j.aop.2019.05.003.

Marulanda, A., Barea, J. M., & Azcón, R. (2009). Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and bacteria) from dry environments: Mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation, 28, 115-124. https://doi.org/10.1007/s00344-009-9079-6.

Masood, S., Zhao, X. Q., & Shen, R. F. (2019). Bacillus pumilus increases boron uptake and inhibits rapeseed growth under boron supply irrespective of phosphorus fertilization. AoB PLANTS, 11 (4), 1–10. https://doi.org/10.1093/aobpla/plz036.

Maurya, B. R., Meena, V. S., & Meena, O. P. (2014). Influence of inceptisol and alfisol’s potassium solubilizing bacteria (KSB) isolates on release of k from waste mica. Vegetos, 27(1), 181–187. https://doi.org/10.5958/j.2229-4473.27.1.028.

May, A., Coelho, L. F., Pedrinho, A., Batista, B. D., Mendes, L. W., Mendes, R., Morandi, M. A. B., Barth, G., Viana, R. S., & Vilela, E. S. D. (2021). The use of indigenous bacterial community as inoculum for plant growth promotion in soybean cultivation. Archives of Agronomy and Soil Science, 00, 1–16. 10.1080/03650340.2021.1964017.

Meena, K. K., Sorty, A. M., Bitla, U. M., Choudhary, K., Gupta, P., Pareek, A., Singh, D. P., Prabha, R., Sahu, P. K., Gupta, V. K., Singh, H. B., Krishanani, K. K., & Minhas, P. S. (2017). Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Frontiers in Plant Science, 8, 1–25. https://doi.org/10.3389/fpls.2017.00172.

Mendes, L. W., Tsai, S. M., Navarrete, A. A., De Hollander, M., Van, V. J. A., & Kuramae, E. E. (2015). Soil-Borne Microbiome: Linking Diversity to Function. Microbial Ecology, 70(1), 255–265. https://doi.org/10.1007/s00248-014-0559-2.

Mo, B., & Lian, B. (2011). Interactions between Bacillus mucilaginosus and silicate minerals (weathered adamellite and feldspar): Weathering rate, products, and reaction mechanisms. Chinese Journal of Geochemistry, 30(2), 187–192. https://doi.org/10.1007/s11631-011-0500-z.

Naik, K., Mishra, S., Srichandan, H., Singh, P. K., & Sarangi, P. K. (2019). Plant growth promoting microbes: Potential link to sustainable agriculture and environment. Biocatalysis and Agricultural Biotechnology, 21, 1-12. 10.1016/j.bcab.2019.101326.

Oliveira, C. O., Pinto, C. C., Garcia, A., Bettiol, J. V. T., Sá, M. E. D., & Lazarini, E. (2017). Production of soybean seeds enriched with molybdenum. Revista Ceres, 64, 282–290.

Parmar, P., & Sindhu, S. S. (2013). Potassium Solubilization by Rhizosphere Bacteria: Influence of Nutritional and Environmental Conditions. Journal of Microbiology Research, 3(1), 25–31. 10.5923/j.microbiology.20130301.04.

Pillay, V. K., & Nowak, J. (1997). lnoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Canadian Journal of Microbiology, 43, 354–361.

Qiu, Z., Egidi, E., Liu, H., Kaur, S., & Singh, B. K. (2019). New frontiers in agriculture productivity: Optimised microbial inocula and in situ microbiome engineering. Biotechnology Advances, 37(6), 1-11. 10.1016/j.biotechadv.2019.03.010.

Singh, M., Awasthi, A., Soni, S. K., Singh, R., Verma, R. K., & Kalra, A. (2015). Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth. Scientific Reports, 5, 1-8. https://doi.org/10.1038/srep15500.

Sturz, A. V. (1995). The role of endophytic bacteria during seed piece decay and potato tuberization. Plant and Soil, 175(2), 257–263. https://doi.org/10.1007/BF00011362.

Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Iqbal K., Muhammad S., Shahid, N., & Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 121, 102–117. 10.1016/j.apsoil.2017.09.030.

Töfoli, J. G., Domingues, R. J., & Ferrari, J. T. (2019). Doenças fúngicas de solo na cultura da batata: sintomas, etiologia e manejo. O Biológico, 81(1), 1–24. https://doi.org/10.31368/1980-6221v81a10017.

Trentin, R., Heldwein, A. B., Streck, N. A., Trentin, G., & Da Silva, J. C. (2013). Subperíodos fenológicos e ciclo da soja conforme grupos de maturidade e datas de semeadura. Pesquisa Agropecuaria Brasileira, 48(7), 703–713. https://doi.org/10.1590/S0100-204X2013000700002.

Wei, Z., Yang, T., Friman, V. P., Xu, Y., Shen, Q., & Jousset, A. (2015). Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nature Communications, 6, 1-9. https://doi.org/10.1038/ncomms9413.

Wubs, E. R. J., Van D. P., Wim H., Bosch, M., & Bezemer, T. M. (2016). Soil inoculation steers restoration of terrestrial Ecosystems. Nature Plants, 2, 1-5. https://doi.org/10.1038/NPLANTS.2016.107.

Yang, W., Xu, X., Li, Y., Wang, Y., Li, M., Wang, Y., Ding, X., & Chu, Z. (2016). Rutin-mediated priming of plant resistance to three bacterial pathogens initiating the early SA signal pathway. PLoS ONE, 11(1), 1-15. https://doi.org/10.1371/journal.pone.0146910.

Descargas

Publicado

18/09/2021

Cómo citar

MAY, A.; COELHO, L. F.; SILVA, E. H. F. M. da; VIEIRA JUNIOR, N. A.; VIANA, R. da S. .; VERDIAL, M.; GONZAGA, A. R.; BORATTO, V. N. M.; BORATTO, I. V. .; CARVALHO, P. Utilización de extractos vegetales de plantas sanas de soja y patata para tratamientos de plantas de la misma especie. Research, Society and Development, [S. l.], v. 10, n. 12, p. e225101220351, 2021. DOI: 10.33448/rsd-v10i12.20351. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20351. Acesso em: 4 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas