Use of rapid prototyping or additive manufacturing for clinical case studies and surgical technique planning using 3D models

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20403

Keywords:

Anatomy; Medical education; Three-dimensional printing.

Abstract

The three-dimensional creation process or additive manufacturing has a great future in medicine. Applying successive layers produces objects with incredible precision in relation to the real part. The creation of 3D models enables a more effective visualization of anatomical structures, facilitating teaching-learning, preoperative study of complex surgeries and even medical practice with the improvement of clinical technique. The present work demonstrates the feasibility of rapid prototyping or 3D digital printing in the teaching-learning process in the field of human anatomy, extending between the fields of clinical cases, surgical planning, and surgical techniques. This is a descriptive study, based on an integrative literature review, with searches in the PubMed, LILACS, SciELO and Academic Google databases, using the descriptors “Tridimensional Printing”, “Anatomy”, “Medical Education”. Many studies show clear benefits in the teaching-learning process in anatomy using 3D models produced with lower cost and great precision. In addition to the applicability in the academic and professional environment, there are still challenges to be faced, such as the cost of printers and training for their use. In this sense, the applicability of this technology has a promising future not only in medicine that involve both the basic field of knowledge and problem solving, improving the efficiency of professionals both in planning and in surgical practice.

Author Biographies

Lucas da Mota Louredo, Universidade Evangélica de Goiás

Acadêmico de Medicina, Programa Institucional Voluntário de Iniciação em Desenvolvimento Tecnológico e Inovação (IDT&I), UniEVANGÉLICA Universidade Evangélica de Goiás, Anápolis – GO, Brasil.

Marcelo Mota de Souza Duarte, Universidade Evangélica de Goiás

Acadêmico de Medicina, Programa Institucional Voluntário de Iniciação em Desenvolvimento Tecnológico e Inovação (IDT&I), UniEVANGÉLICA Universidade Evangélica de Goiás, Anápolis – GO, Brasil.

Maria Clara Emos Araújo, Universidade Evangélica de Goiás

Acadêmica de Medicina, Programa Institucional Voluntário de Iniciação em Desenvolvimento Tecnológico e Inovação (IDT&I), UniEVANGÉLICA Universidade Evangélica de Goiás, Anápolis – GO, Brasil.

Joelma da Mota Louredo, Universidade de Brasília

Graduada em Arquitetura e Urbanismo pela Universidade Estadual de Goiás (2015), Mestrado pelo Programa de Pós-graduação da Faculdade de Arquitetura e Urbanismo da Universidade de Brasília (2019) em Acústica e Desenvolvimento de Materiais. Doutorado em andamento na mesma instituição e área de atuação. Atuação no mercado através de consultoria em desempenho acústico relativos aos requisitos da norma de desempenho e acústica de salas.

Jalsi Tacon Arruda, Universidade Evangélica de Goiás

Departamento Morfofuncional – Curso de Medicina, Coordenadora do Grupo de Pesquisas em Medicina Preventiva e Qualidade de Vida, UniEVANGÉLICA Universidade Evangélica de Goiás, Anápolis – GO, Brasil.

References

Allen, L. K., Bhattacharyya, S., & Wilson, T. D. (2015). Development of an interactive anatomical three-dimensional eye model. Anatomical sciences education, 8(3), 275–282. https://doi.org/10.1002/ase.1487

Arai, K., Murata, D., Verissimo, A. R., Mukae, Y., Itoh, M., Nakamura, A., Morita, S., & Nakayama, K. (2018). Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer. PloS one, 13(12), e0209162. https://doi.org/10.1371/journal.pone.0209162

Araujo, M. C. E., Duarte, M. M. S., Louredo, L. M., Louredo, J. M., & Arruda, J. T. (2021). Contribuições da engenharia reversa e produção de modelos 3D para o ensino médico. Research, Society and Development, 10(11), e385101119692. https://doi.org/10.33448/rsd-v10i11.19692

Araujo, M. C. E., Louredo, L. M., Duarte, M. M. S., Moreira, S. M., Sugita, D. M., & Arruda, J. T. (2019). Uso da engenharia reversa e tecnologia 3D para produção de biomodelos a partir de exames de imagem reais. ANAIS I CAMEG., RESU – Revista Educação em Saúde, 7, suplemento 3.

Awadh, A. B., Clark, J., Clowry, G., & Keenan, I. D. (2020). Multimodal Three-Dimensional Visualization Enhances Novice Learner Interpretation of Basic Cross-Sectional Anatomy. Anatomical sciences education, 10.1002/ase.2045. Advance online publication. https://doi.org/10.1002/ase.2045.

Balestrini, C., & Campo-Celaya, T. (2016). With the advent of domestic 3-dimensional (3D) printers and their associated reduced cost, is it now time for every medical school to have their own 3D printer? Medical Teacher, 38(3), 312-313. https://doi.org/10.3109/0142159X.2015.1060305.

Ballard, D. H., Trace, A. P., Ali, S., Hodgdon, T., Zygmont, M. E., DeBenedectis, C. M., Smith, S. E., Richardson, M. L., Patel, M. J., Decker, S. J., & Lenchik, L. (2018). Clinical Applications of 3D Printing: Primer for Radiologists. Academic radiology, 25(1), 52–65. https://doi.org/10.1016/j.acra.2017.08.004

Balzani, R. N. (2017). A produção de impressoras tridimensionais de baixo custo para estudantes de arquitetura. Dissertação de mestrado. Programa de Pós-Graduação da Faculdade de Arquitetura e Urbanismo da Universidade de Brasília. Brasília, 100 p.

Banerjee, A., Galassi, F., Zacur, E., De Maria, G. L., Choudhury, R. P., & Grau, V. (2020). Point-Cloud Method for Automated 3D Coronary Tree Reconstruction From Multiple Non-Simultaneous Angiographic Projections. IEEE transactions on medical imaging, 39(4), 1278–1290. https://doi.org/10.1109/TMI.2019.2944092

Barreto, T. F. (2018). Uso de peças anatômicas em 3d como estratégia para o ensino da anatomia em curso médico. Dissertação de mestrado. Escola Baiana de Medicina e Saúde Pública, Salvador, BA, Brasil, 85 p.

Bartikian, M., Ferreira, A. Gonçalves-Ferreira, A. & Neto, L. L. (2019). 3D printing anatomical models of head bones. Surgical and Radiologic Anatomy, 41(10), 1205-1209. https://doi.org/10.1007/s00276-018-2148-4.

Bertti, J. V. P., Silveira, E. E., & Neto, A. C. A. (2018). Reconstrução e impressão 3D do neurocrânio de cão com o uso de tomografia computadorizada como ferramenta para auxiliar no ensino da anatomia veterinária. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 75(5), p. 1653-1658. http://dx.doi.org/10.1590/1678-4162-11209

Birbara, N. S., Otton, J. M., & Pather, N. (2019). 3D Modelling and Printing Technology to Produce Patient-Specific 3D Models. Heart, lung & circulation, 28(2), 302–313. https://doi.org/10.1016/j.hlc.2017.10.017

Bizzotto, N., Sandri, A., Regis, D., Romani, D., Tami, I., & Magnan, B. (2015). Three-Dimensional Printing of Bone Fractures: A New Tangible Realistic Way for Preoperative Planning and Education. Surgical innovation, 22(5), 548–551. https://doi.org/10.1177/1553350614547773

Castelo Branco, R. R., Martins, K. Y. N., Filgueira, A. K. L., Valadares, E. J. O., Galdino, K. E., Morais, M. E.., Ramos, M. G. O., Martins, N. N., Martins, K. Y. N., & Rodrigues, J. K. G. (2021). Caracterização da performance do material Poliácido Lático (PLA) manufaturado pela tecnologia de Modelagem de Fusão e Deposição (FDM). Research, Society and Development, 10(8), e44210817348. https://doi.org/10.33448/rsd-v10i8.17348

Chantarapanich, N., Rojanasthien, S., Chernchujit, B., Mahaisavariya, B., Karunratanakul, K., Chalermkarnnon, P., Glunrawd, C., & Sitthiseripratip, K. (2017). 3D CAD/reverse engineering technique for assessment of Thai morphology: Proximal femur and acetabulum. Journal of Orthopaedic Science, 22(1), 703-709. https://doi.org/10.1016/j.jos.2017.02.003.

Chen, Y., Bian, L., Zhou, H., Wu, D., Xu, J., Gu, C., Fan, X., Liu, Z., Zou, J., Xia, J., & Xu, Z. (2020a). Usefulness of three-dimensional printing of superior mesenteric vessels in right hemicolon cancer surgery. Scientific reports, 10(1), 11660. https://doi.org/10.1038/s41598-020-68578-y

Choi, J. Kwon, O. Jo, W. Lee, H. J., & Moon, M. (2015). 4D Printing Technology: A Review. 3D Printing and Additive Manufacturing. 2(4), 159-167. https://doi.org/10.1089/3dp.2015.0039

Corazza, P. F. L., Baeder, F. M., Silva, D. F., Albuquerque, A. C. L., Silva, J. V. L., Junqueira, J. L. C., & Panzarella, F. K. (2020). Avaliação da precisão de diferentes protocolos de aquisição de TCFC usados em modelos de prototipagem rápida. Research, Society and Development, 9(11), e2649119842. https://doi.org/10.33448/rsd-v9i11.9842

Cordeiro, R. G. & Menezes, R. F. (2019). A Falta de Cadáveres para Ensino e Pesquisa. Revista Brasileira de Educação Médica. 43(1), 588-597. https://doi.org/10.1590/1981-5271v43suplemento1-20190217

Cramer, J., Quigley, E., Hutchins, T., & Shah, L. (2017). Educational Material for 3D Visualization of Spine Procedures: Methods for Creation and Dissemination. Journal of digital imaging, 30(3), 296–300. https://doi.org/10.1007/s10278-017-9950-0

Cui, D., Wilson, T. D., Rockhold, R. W., Lehman, M. N., & Lynch, J. C. (2017). Evaluation of the effectiveness of 3D vascular stereoscopic models in anatomy instruction for first year medical students. Anatomical sciences education, 10(1), 34–45. https://doi.org/10.1002/ase.1626

Duarte, M. M. S., Araujo, M. C. E., Louredo, L. M., Louredo, J. M., & Arruda, J. T. (2021). Aplicabilidades da técnica de fotogrametria no ensino de Anatomia Humana. Research, Society and Development, 10(11), e51101119328. https://doi.org/10.33448/rsd-v10i11.19328

Duarte, M. M. S., Araújo, M. C. E., Louredo, L. M., Moreira, S. M., Sugita, D. M., & Arruda, J. T. (2019). Fotogrametria e impressão 3D aplicada ao ensino de anatomia. ANAIS I CAMEG., RESU – Revista Educação em Saúde, 7, suplemento 3.

Elomaa, L., & Yang, Y. P. (2017). Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs. Tissue engineering. Part B, Reviews, 23(5), 436–450. https://doi.org/10.1089/ten.TEB.2016.0348

Erolin C. (2019). Interactive 3D Digital Models for Anatomy and Medical Education. Advances in experimental medicine and biology, 1138, 1–16. https://doi.org/10.1007/978-3-030-14227-8_1

Ganguli, A., Pagan-Diaz, G. J., Grant, L., Cvetkovic, C., Bramlet, M., Vozenilek, J., Kesavadas, T., & Bashir, R. (2018). 3D printing for preoperative planning and surgical training: a review. Biomedical microdevices, 20(3), 65. https://doi.org/10.1007/s10544-018-0301-9.

Garcia, J., Yang, Z., Mongrain, R., Leask, R. L., & Lachapelle, K. (2018). 3D printing materials and their use in medical education: a review of current technology and trends for the future. BMJ Simulation & Technology Enhanced Learning, 4(1), 24-40. https://doi.org/10.1136/bmjstel-2017-000234.

Ghazi, A. E., & Teplitz, B. A. (2020). Role of 3D printing in surgical education for robotic urology procedures. Translational andrology and urology, 9(2), 931–941. https://doi.org/10.21037/tau.2020.01.03

Guimarães, B., Dourado, L., Tsisar, S., Diniz, J. M., Madeira, M. D., & Ferreira, M. A. (2017). Rethinking Anatomy: How to Overcome Challenges of Medical Education's Evolution. Acta medica portuguesa, 30(2), 134–140. https://doi.org/10.20344/amp.8404

Hann, S. Y., Cui, H., Esworthy, T., Miao, S., Zhou, X., Lee, S. J., Fisher, J. P., & Zhang, L. G. (2019). Recent advances in 3D printing: vascular network for tissue and organ regeneration. Translational research: the journal of laboratory and clinical medicine, 211, 46–63. https://doi.org/10.1016/j.trsl.2019.04.002

Hecht-López, P., & Larrazábal-Miranda, A. (2018). Uso de Nuevos Recursos Tecnológicos en la Docencia de un Curso de Anatomía con Orientación Clínica para Estudiantes de Medicina. International Journal of Morphology, 36(3), 821-828. https://dx.doi.org/10.4067/S0717-95022018000300821.

Hermsen, J. L., Roldan-Alzate, A., & Anagnostopoulos, P. V. (2020). Three-dimensional printing in congenital heart disease. Journal of thoracic disease, 12(3), 1194–1203. https://doi.org/10.21037/jtd.2019.10.38.

Itoh, M., Nakayama, K., Noguchi, R., Kamohara, K., Furukawa, K., Uchihashi, K., Toda, S., Oyama, J., Node, K., & Morita, S. (2015). Scaffold-Free Tubular Tissues Created by a Bio-3D Printer Undergo Remodeling and Endothelialization when Implanted in Rat Aortae. PloS one, 10(9), e0136681. https://doi.org/10.1371/journal.pone.0136681

Jones D. G. (2019). Three-dimensional Printing in Anatomy Education: Assessing Potential Ethical Dimensions. Anatomical sciences education, 12(4), 435–443. https://doi.org/10.1002/ase.1851

Jones, D. B., Sung, R., Weinberg, C., Korelitz, T., & Andrews, R. (2016). Three-Dimensional Modeling May Improve Surgical Education and Clinical Practice. Surgical innovation, 23(2), 189–195. https://doi.org/10.1177/1553350615607641

Keenan, I. D., & Ben Awadh, A. (2019). Integrating 3D Visualisation Technologies in Undergraduate Anatomy Education. Advances in experimental medicine and biology, 1120, 39–53. https://doi.org/10.1007/978-3-030-06070-1_4

Kim, G. B., Lee, S., Kim, H., Yang, D. H., Kim, Y. H., Kyung, Y. S., Kim, C. S., Choi, S. H., Kim, B. J., Ha, H., Kwon, S. U., & Kim, N. (2016). Three-Dimensional Printing: Basic Principles and Applications in Medicine and Radiology. Korean journal of radiology, 17(2), 182–197. https://doi.org/10.3348/kjr.2016.17.2.182

Koche, J. C. (2011). Fundamentos de metodologia científica. Petrópolis: Vozes

Kriegman, S., Blackiston, D., Levin, M., & Bongard, J. (2020). A scalable pipeline for designing reconfigurable organisms. Proceedings of the National Academy of Sciences of the United States of America, 117(4), 1853–1859. DOI: 10.1073/pnas.1910837117

Krishnasamy, S., Mokhtar, R., Singh, R., Sivallingam, S., Aziz, Y., & Mathaneswaran, V. (2021). 3D Rapid Prototyping Heart Model Validation for Teaching and Training - A Pilot Project in a Teaching Institution. Brazilian journal of cardiovascular surgery, 10.21470/1678-9741-2020-0433. Advance online publication. https://doi.org/10.21470/1678-9741-2020-0433

Leary, O. P., Crozier, J., Liu, D. D., Niu, T., Pertsch, N. J., Camara-Quintana, J. Q., Svokos, K. A., Syed, S., Telfeian, A. E., Oyelese, A. A., Woo, A. S., Gokaslan, Z. L., & Fridley, J. S. (2021). Three-Dimensional Printed Anatomic Modeling for Surgical Planning and Real-Time Operative Guidance in Complex Primary Spinal Column Tumors: Single-Center Experience and Case Series. World neurosurgery, 145, e116–e126. https://doi.org/10.1016/j.wneu.2020.09.145.

Lim, K. H., Loo, Z. Y., Goldie, S. J., Adams, J. W., & McMenamin, P. G. (2016). Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anatomical sciences education, 9(3), 213–221. https://doi.org/10.1002/ase.1573

Liu, F., & Wang, X. (2020). Synthetic Polymers for Organ 3D Printing. Polymers, 12(8), 1765. https://doi.org/10.3390/polym12081765

Louredo, L. M, Duarte, M. M. S., Araújo, M. C. E., Moreira, S. M., Sugita, D. M., & Arruda, J. T. (2019). Aplicabilidade de biomodelos tridimensionais produzidos com impressora 3d para estudos de anatomia. RESU – Revista Educação em Saúde: V7, suplemento 3. Recuperado de: http://periodicos.unievangelica.edu.br/index.php/educacaoemsaude/article/view/4187/3102

Lozano, M. T. U., Haro, F. B., Diaz, C. M., Manzoor, S., Ugidos, G. F., & Mendez, J. A. J. (2017). 3D Digitization and Prototyping of the Skull for Practical Use in the Teaching of Human Anatomy. Journal of Medical Systems, 41(83), 1-5. https://doi.org/10.1007/s10916-017-0728-1.

Lugassy, D., Levanon, Y., Rosen, G., Livne, S., Fridenberg, N., Pilo, R., & Brosh, T. (2020). Does Augmented Visual Feedback from Novel, Multicolored, Three-Dimensional-Printed Teeth Affect Dental Students' Acquisition of Manual Skills? Anatomical sciences education, 10.1002/ase.2014. Advance online publication. ttps://doi.org/10.1002/ase.2014.

Luo, J., Qin, L., Zhao, L., Gui, L., Ellis, M. W., Huang, Y., Kural, M. H., Clark, J. A., Ono, S., Wang, J., Yuan, Y., Zhang, S. M., Cong, X., Li, G., Riaz, M., Lopez, C., Hotta, A., Campbell, S., Tellides, G., Dardik, A., … Qyang, Y. (2020). Tissue-Engineered Vascular Grafts with Advanced Mechanical Strength from Human iPSCs. Cell stem cell, 26(2), 251–261.e8. https://doi.org/10.1016/j.stem.2019.12.012

Mahmood, F., Owais, K., Taylor, C., Montealegre-Gallegos, M., Manning, W., Matyal, R., & Khabbaz, K. R. (2015). Three-dimensional printing of mitral valve using echocardiographic data. JACC. Cardiovascular imaging, 8(2), 227–229. https://doi.org/10.1016/j.jcmg.2014.06.020

Mao, Y., Xu, C., Xu, J., Li, H., Liu, F., Yu, D., & Zhu, Z. (2015). The use of customized cages in revision total hip arthroplasty for Paprosky type III acetabular bone defects. International orthopaedics, 39(10), 2023–2030. https://doi.org/10.1007/s00264-015-2965-6

Mendonça, C. R., Souza, K. T. O., Arruda, J. T., Noll, M., & Guimarães, N. N. (2021), Human Anatomy: Teaching–Learning Experience of a Support Teacher and a Student with Low Vision and Blindness. Anatomical sciences education, 10.1002/ase.2058. https://doi.org/10.1002/ase.2058.

Miljanovic, D., Seyedmahmoudian, M., Stojcevski, A., & Horan, B. (2020). Design and Fabrication of Implants for Mandibular and Craniofacial Defects Using Different Medical-Additive Manufacturing Technologies: A Review. Annals of biomedical engineering, 48(9), 2285–2300. https://doi.org/10.1007/s10439-020-02567-0.

Moraes, S. G., & Muniz, A. L. (2018). Utilização de modelos 3D como recurso didático no ensino de embriologia do sistema nervoso central. Revista Da Faculdade De Ciências Médicas De Sorocaba, 20(Supl.). Recuperado de: https://revistas.pucsp.br/index.php/RFCMS/article/view/40101

Mumith, A., Thomas, M., Shah, Z., Coathup, M., & Blunn, G. (2018). Additive manufacturing: current concepts, future trends. The bone & joint journal, 100-B(4), 455–460. https://doi.org/10.1302/0301-620X.100B4.BJJ-2017-0662.R2

Neumann, F. J., Sousa-Uva, M., Ahlsson, A., Alfonso, F., Banning, A. P., Benedetto, U., Byrne, R. A., Collet, J. P., Falk, V., Head, S. J., Jüni, P., Kastrati, A., Koller, A., Kristensen, S. D., Niebauer, J., Richter, D. J., Seferovic, P. M., Sibbing, D., Stefanini, G. G., Windecker, S., … ESC Scientific Document Group (2019). 2018 ESC/EACTS Guidelines on myocardial revascularization. European heart journal, 40(2), 87–165. https://doi.org/10.1093/eurheartj/ehy394

Niu, G., Sapoznik, E., & Soker, S. (2014). Bioengineered blood vessels. Expert opinion on biological therapy, 14(4), 403–410. https://doi.org/10.1517/14712598.2014.880419

Noor, N., Shapira, A., Edri, R., Gal, I., Wertheim, L., & Dvir, T. (2019). Tissue Engineering: 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts (Adv. Sci. 11/2019). Advanced Science, 6(11), 1970066. https://doi.org/10.1002/advs.201970066

Provenzano, D.; Rao, Y.J.; Mitic, K.; Obaid, S.N.; Pierce, D.; Huckenpahler, J.; Berger, J.; Goyal, S.; & Loew, M.H. (2020). Rapid Prototyping of Reusable 3D-Printed N95 Equivalent Respirators at the George Washington University. Preprints, 2020030444. doi: 10.20944/preprints202003.0444.v1

Rodrigues, V. P., Senzi Zancul, E., Gonçalves Mançanares, C., Mezzeti Giordano, C., & Sergio Salerno, M. (2017). Additive manufacturing: state-of-the-art and application framework. G E P R O S: Gestao da Producao, Operacoes e Sistemas (Online), 12(3). https://doi.org/10.15675/gepros.v12i3.1657

Romeiro, N. C., Salomão, A., Prim, G. S., & Vieira, M. L. H. (2019). Impressão 3D de peças anatômicas escaneadas como ferramenta de educação. Anais do 9º Congresso Internacional de Design da Informação. Belo Horizonte, MG, Brasil. DOI: 10.5151/9cidi-congic-4.0337

Shakibania, S., Ghazanfari, L., Raeeszadeh-Sarmazdeh, M., & Khakbiz, M. (2021). Medical application of biomimetic 4D printing. Drug development and industrial pharmacy, 47(4), 521–534. https://doi.org/10.1080/03639045.2020.1862179

Sheu, A. Y., Laidlaw, G. L., Fell, J. C., Triana, B. P., Goettl, C. S., & Shah, R. P. (2019). Custom 3-Dimensional Printed Ultrasound-Compatible Vascular Access Models: Training Medical Students for Vascular Access. Journal of vascular and interventional radiology: JVIR, 30(6), 922–927. https://doi.org/10.1016/j.jvir.2019.02.011

Silva, P. C., Santandrea, R. S., Brandão, L. C., Xavier, M. V. A., & Volpini, V. L. (2020). Manufatura aditiva: Revisão sistemática da literatura / Additive manufacturing: A systematic review. Brazilian Journal of Development, 6(11). https://doi.org/10.34117/bjdv6n11-023

Singh, R., Suri, A., Anand, S., & Baby, B. (2016). Validation of Reverse-Engineered and Additive-Manufactured Microsurgical Instrument Prototype. Surgical innovation, 23(6), 606–612. https://doi.org/10.1177/1553350616656282

Smith, B., & Dasgupta, P. (2020). 3D printing technology and its role in urological training. World journal of urology, 38(10), 2385–2391. https://doi.org/10.1007/s00345-019-02995-1

Smith, C. F., Tollemache, N., Covill, D., & Johnston, M. (2018). Take away body parts! An investigation into the use of 3D-printed anatomical models in undergraduate anatomy education. Anatomical sciences education, 11(1), 44–53. https://doi.org/10.1002/ase.1718

Soares Neto, J., Barbosa, M. L. L., Matos, H. L., Xavier, A. R., Cerqueira, G. S., & Souza, E. P. (2020). Um estudo sobre a tecnologia 3D aplicada ao ensino de anatomia: uma revisão integrativa. Research, Society and Development, 9(11), e7489119301. https://doi.org/10.33448/rsd-v9i11.9301

Su, W., Xiao, Y., He, S., Huang, P., & Deng, X. (2018). Three-dimensional printing models in congenital heart disease education for medical students: a controlled comparative study. BMC Medical Education, 18(178), 1-6. https://doi.org/10.1186/s12909-018-1293-0

Tack, P., Victor, J., Gemmel, P., & Annemans, L. (2016). 3D-printing techniques in a medical setting: a systematic literature review. Biomedical engineering online, 15(1), 115. https://doi.org/10.1186/s12938-016-0236-4

Taher, F., Falkensammer, J., McCarte, J., Strassegger, J., Uhlmann, M., Schuch, P., & Assadian, A. (2017). The influence of prototype testing in three-dimensional aortic models on fenestrated endograft design. Journal of vascular surgery, 65(6), 1591–1597. https://doi.org/10.1016/j.jvs.2016.10.108

Universidade Evangélica de Goiás. Catálogo de Laboratórios da UniEvangélica, Campus Rev. Arthur Wesley Archibald, 2020. Recuperado de: https://www4.unievangelica.edu.br/storage/4487/Cat%C3%A1logo-de-Laborat%C3%B3rios---2020---menor.pdf Acesso em: 16/julho/2021

Uwechue, R., Gogalniceanu, P., Kessaris, N., Byrne, N., Chandak, P., Olsburgh, J., Ahmed, K., Mamode, N., & Loukopoulos, I. (2018). A novel 3D-printed hybrid simulation model for robotic-assisted kidney transplantation (RAKT). Journal of robotic surgery, 12(3), 541–544. https://doi.org/10.1007/s11701-018-0780-y

Valverde, I. (2017). Three-dimensional Printed Cardiac Models: Applications in the Field of Medical Education, Cardiovascular Surgery, and Structural Heart Interventions. Revista espanola de cardiologia (English ed.), 70(4), 282–291. https://doi.org/10.1016/j.rec.2017.01.012.

Volpato, N., Munhoz, A. L. J., Costa, C. A., Ahrens, C. H., Carvalho, J. Santos, J. R. L., Silva, J. V. L., Foggiato, J. A., & Lima, M. S. F. (2017). Manufatura Aditiva: Tecnologias e aplicações da impressão 3D. 1ª ed. São Paulo: Blucher.

Wang, P., Sun, Y., Shi, X., Shen, H., Ning, H., & Liu, H. (2021a). 3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Bio-design and manufacturing, 1–35. Advance online publication. https://doi.org/10.1007/s42242-020-00109-0

Wang, Y., Cui, H., Wang, Y., Xu, C., Esworthy, T. J., Hann, S. Y., Boehm, M., Shen, Y. L., Mei, D., & Zhang, L. G. (2021b). 4D Printed Cardiac Construct with Aligned Myofibers and Adjustable Curvature for Myocardial Regeneration. ACS applied materials & interfaces, 13(11), 12746–12758. https://doi.org/10.1021/acsami.0c17610

Wen, C. L. (2016) Homem Virtual (Ser Humano Virtual 3D): A Integração da Computação Gráfica, Impressão 3D e Realidade Virtual para Aprendizado de Anatomia, Fisiologia e Fisiopatologia. Revista de Graduação USP, 1(1), 7-15. doi: 10.11606/issn.2525-376X.v1i1p7-15.

Wilk, R., Likus, W., Hudecki, A., Syguła, M., Różycka-Nechoritis, A., & Nechoritis, K. (2020). What would you like to print? Students' opinions on the use of 3D printing technology in medicine. PloS one, 15(4), e0230851. https://doi.org/10.1371/journal.pone.0230851.

Wu, A. M., Wang, K., Wang, J. S., Chen, C. H., Yang, X. D., Ni, W. F., & Hu, Y. Z. (2018). The addition of 3D printed models to enhance the teaching and learning of bone spatial anatomy and fractures for undergraduate students: a randomized controlled study. Annals of translational medicine, 6(20), 403. https://doi.org/10.21037/atm.2018.09.59

Ye, Z., Dun, A., Jiang, H., Nie, C., Zhao, S., Wang, T., & Zhai, J. (2020). The role of 3D printed models in the teaching of human anatomy: a systematic review and meta-analysis. BMC medical education, 20(1), 335. https://doi.org/10.1186/s12909-020-02242-x

Published

23/09/2021

How to Cite

LOUREDO, L. da M.; DUARTE, M. M. de S.; ARAÚJO, M. C. E.; LOUREDO, J. da M.; ARRUDA, J. T. Use of rapid prototyping or additive manufacturing for clinical case studies and surgical technique planning using 3D models. Research, Society and Development, [S. l.], v. 10, n. 12, p. e336101220403, 2021. DOI: 10.33448/rsd-v10i12.20403. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20403. Acesso em: 16 nov. 2024.

Issue

Section

Review Article