Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation
DOI:
https://doi.org/10.33448/rsd-v10i12.20466Keywords:
Forest inventory; Machine learning; Artificial neural network; Eucalyptus sp. plantation.Abstract
Forest inventory is an important tool for estimating the production of forest stands and normally employs traditional methods for volume estimation. However, as a result of technological advancements, artificial neural networks and remote sensing have assumed a prominent role in the forestry sector since satellite images have different components that correlate with the dendrometric variables and can be used as auxiliary variables. The objective of this work was to evaluate the performance of artificial neural networks regarding the estimation of volume in a Eucalyptus sp. plantation with the use of satellite images. Pre-cut inventory data were used with ages varying between 5.3 and 6.3 years. The variables used were volume, age, 4 bands of the satellite image with a 10 m spatial resolution from Sentinell-2 satellite, ratio between the bands, NDVI, and genetic material. All processing was performed using the free software R. The evaluation criteria for the neural network were percentage of residual standard error and graphical analysis of the residues. The best neural network configuration for volume estimation presented a residual standard error of 10.63% and 12.00% for training and validation, respectively. The methodology proposed in this work proved to be efficient in estimating the volume of the stand.
References
Almeida, A. da C., Barros, P. L. C., Monteiro, J. H. A., & Rocha, B. R. P. (2009). Estimation of Aboveground Forest Biomass in Amazonia with Neural Networks and Remote Sensing. IEEE Latin America Transactions, 7(1), 27–32. https://doi.org/10.1109/TLA.2009.5173462
Araujo, T. P., & Mello, F. M. (2010). Processamento de imagens digitais - Razão entre bandas. Geociencias, 29(1), 121–131.
Assman, E. (1970). The principles of forest yield study (P. W. Davis (ed.); 1st ed.). Pergamon Press.
Bhering, L. L., Cruz, C. D., Peixoto, L. de A., Rosado, A. M., Laviola, B. G., & Nascimento, M. (2015). Application of neural networks to predict volume in eucalyptus. Crop Breeding and Applied Biotechnology, 15(3), 125–131. https://doi.org/10.1590/1984-70332015v15n3a23
Bivand, R., Keitt, T., & Rowlingson, B. (2017). rgdal: Bindings for the Geospatial Data Abstraction Library. [S.1.], 2017. R package version 1.2-8. https://CRAN.R-project.org/package=rgdal
Chiarello, F., Steiner, M. T. A., Oliveira, E. B. DE, Arce, J. E., & Ferreira, J. C. (2019). Artificial neural networks applied in forest biometrics and modeling: state of the art (january/2007 to july/2018). cerne, 25(2), 140–155. https://doi.org/10.1590/01047760201925022626
Cordeiro, A. P. A., Berlato, M. A., Fontana, D. C., Melo, R. W. de, Shimabukuro, Y. E., & Fior, C. S. (2017). Regiões homogêneas de vegetação utilizando a variabilidade do ndvi. Ciência Florestal, 27(3), 883. https://doi.org/10.5902/1980509828638
Coulibaly, L., Migolet, P., Adegbidi, H. G., Fournier, R., & Hervet, E. (2008). Mapping Aboveground Forest Biomass from Ikonos Satellite Image and Multi-Source Geospatial Data using Neural Networks and a Kriging Interpolation. IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium, III-298-III–301. https://doi.org/10.1109/IGARSS.2008.4779342
Cutler, M. E. J., Boyd, D. S., Foody, G. M., & Vetrivel, A. (2012). Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 66–77. https://doi.org/10.1016/j.isprsjprs.2012.03.011
Deb, D., Singh, J. P., Deb, S., Datta, D., Ghosh, A., & Chaurasia, R. S. (2017). An alternative approach for estimating above ground biomass using Resourcesat-2 satellite data and artificial neural network in Bundelkhand region of India. Environmental Monitoring and Assessment, 189(11), 576. https://doi.org/10.1007/s10661-017-6307-6
Del Frate, F., & Solimini, D. (2004). On Neural Network Algorithms for Retrieving Forest Biomass From SAR Data. IEEE Transactions on Geoscience and Remote Sensing, 42(1), 24–34. https://doi.org/10.1109/TGRS.2003.817220
Reis, A. A., Carvalho, M. C., de Mello, J. M., Gomide, L. R., Ferraz Filho, A. C., & Acerbi Junior, F. W. (2018). Spatial prediction of basal area and volume in Eucalyptus stands using Landsat TM data: an assessment of prediction methods. New Zealand Journal of Forestry Science, 48(1), 1. https://doi.org/10.1186/s40490-017-0108-0
Ferraz, A. S., Soares, V. P., Soares, C. P. B., Ribeiro, C. A. A. S., Binoti, D. H. B., & Leite, H. G. (2014). Estimativa do estoque de biomassa em um fragmento florestal usando imagens orbitais. Floresta e Ambiente, 21(3), 286–296. https://doi.org/10.1590/2179-8087.052213
Foody, G. M., Cutler, M. E., McMorrow, J., Pelz, D., Tangki, H., Boyd, D. S., & Douglas, I. (2001). Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Global Ecology and Biogeography, 10(4), 379–387. https://doi.org/10.1046/j.1466-822X.2001.00248.x
Frazier, R. J., Coops, N. C., Wulder, M. A., & Kennedy, R. (2014). Characterization of aboveground biomass in an unmanaged boreal forest using Landsat temporal segmentation metrics. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 137–146. https://doi.org/10.1016/j.isprsjprs.2014.03.003
Gorgens, E. B., Leite, H. G., Santos, H. do N., & Gleriani, J. M. (2009). Estimação do volume de árvores utilizando redes neurais artificiais. Revista Árvore, 33(6), 1141–1147. https://doi.org/10.1590/S0100-67622009000600016
Haykin, S. (2001a). Perceptrons de múltiplas camadas. In Redes Neurais: princípios e prática (2nd ed., pp. 182–198). Bookman.
Haykin, S. (2001b). Processos de Aprendizagem. In Redes Neurais: princípios e prática (2nd ed., pp. 75–91). Bookman.
Hijmans, R. J. (2016). raster: Geographic Data Analysis and Modeling. R package version 2.5-8. Retrieved from: https://CRAN.R-project.org/package=raster
Ingram, J. C., Dawson, T. P., & Whittaker, R. J. (2005). Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks. Remote Sensing of Environment, 94(4), 491–507. https://doi.org/10.1016/j.rse.2004.12.001
Jutras, P., Prasher, S. O., & Mehuys, G. R. (2009). Prediction of street tree morphological parameters using artificial neural networks. Computers and Electronics in Agriculture, 67(1–2), 9–17. https://doi.org/10.1016/j.compag.2009.02.008
Leal, A. J. F., Miguel, E. P., Baio, F. H. R., Neves, D. de C., & Leal, U. A. S. (2015). Redes neurais artificiais na predição da produtividade de milho e definição de sítios de manejo diferenciado por meio de atributos do solo. Bragantia, 74(4), 436–444. https://doi.org/10.1590/1678-4499.0140
Lima, M. B. de O., Lustosa-Junior, I. M., Oliveira, E. M., Ferreira, J. C. B., Soares, K. L., & Miguel, E. P. (2017). Artificial neural networks in whole-stand level modeling of Eucalyptus plants. African Journal of Agricultural Research, 12(7), 524–534. https://doi.org/10.5897/AJAR2016.12068
López-Serrano, P. M., López-Sánchez, C. A., Álvarez-González, J. G., & García-Gutiérrez, J. (2016). A Comparison of Machine Learning Techniques Applied to Landsat-5 TM Spectral Data for Biomass Estimation. Canadian Journal of Remote Sensing, 42(6), 690–705. https://doi.org/10.1080/07038992.2016.1217485
Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., & Moran, E. (2016). A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9(1), 63–105. https://doi.org/10.1080/17538947.2014.990526
Martins, E. R., Binoti, M. L. M. S., Leite, H. G., Binoti, D. H. B., & Dutra, G. C. (2016). Configuração de redes neurais artificiais para estimação da altura total de árvores de eucalipto. Revista Brasileira de Ciências Agrárias - Brazilian Journal of Agricultural Sciences, 11(2), 117–123. https://doi.org/10.5039/agraria.v11i2a5373
Miguel, E. P., Rezende, A. V., Leal, F. A., Matricardi, E. A. T., Vale, A. T. do, & Pereira, R. S. (2015). Redes neurais artificiais para a modelagem do volume de madeira e biomassa do cerradão com dados de satélite. Pesquisa Agropecuária Brasileira, 50(9), 829–839. https://doi.org/10.1590/S0100-204X2015000900012
Moreno Arteaga, A. J., Thiersch, M. F. B. M., Valente, R. O. A., Bernardi, L. K., Vasconcelos, S. L., & Thiersch, C. R. (2019). Espacialidad volumétrica de madera en plantaciones forestales usando redes neurales artificiales con imágenes de satélite. Acta Agronómica, 68(2), 142–150. https://doi.org/10.15446/acag.v68n2.78945
Nandy, S., Singh, R., Ghosh, S., Watham, T., Kushwaha, S. P. S., Kumar, A. S., & Dadhwal, V. K. (2017). Neural network-based modelling for forest biomass assessment. Carbon Management, 8(4), 305–317. https://doi.org/10.1080/17583004.2017.1357402
Oliveira, F. S. (2012). Uso de imagens do satélite ALOS para estimativa de parâmetros dendrométricos de plantios de eucalipto. Federal University of Viçosa, Viçosa, MG, Brazil.
R Core Team, 2017. R: A Language and Environment for Statistical Computing. Vienna, Austria. Retrieved from: https://www.R-project.org/
Ribeiro, B. M. G., Saito, E. A., Korting, T. S., Maeda, E. E., & Formaggio, A. R. (2009). Estudo da variância em imagens MODIS para diferentes classes de coberturas dos solos: estudo de caso em Querência – MT. In: Proceedings of the “2009 XIV Brazilian Symposium on Remote Sensing”, 25-30 April 2009, INPE, Natal, RN, Brazil, pp. 1005-1012.
Sakici, O. E., & Günlü, A. (2018). Artificial Intelligence applications for predicting some stand attributes using landsat 8 OLI satellite data: a case study from Turkey. Applied Ecology and Environmental Research, 16(4), 5269–5285. https://doi.org/10.15666/aeer/1604_52695285
Santi, E., Paloscia, S., Pettinato, S., Chirici, G., Mura, M., & Maselli, F. (2015). Application of Neural Networks for the retrieval of forest woody volume from SAR multifrequency data at L and C bands. European Journal of Remote Sensing, 48(1), 673–687. https://doi.org/10.5721/EuJRS20154837
Santi, E., Paloscia, S., Pettinato, S., Fontanelli, G., Mura, M., Zolli, C., Maselli, F., Chiesi, M., Bottai, L., & Chirici, G. (2017). The potential of multifrequency SAR images for estimating forest biomass in Mediterranean areas. Remote Sensing of Environment, 200, 63–73. https://doi.org/10.1016/j.rse.2017.07.038
Sarker, L. R., & Nichol, J. E. (2011). Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote Sensing of Environment, 115(4), 968–977. https://doi.org/10.1016/j.rse.2010.11.010
Silva, M. L. M. da, Binoti, D. H. B., Gleriani, J. M., & Leite, H. G. (2009). Ajuste do modelo de Schumacher e Hall e aplicação de redes neurais artificiais para estimar volume de árvores de eucalipto. Revista Árvore, 33(6), 1133–1139. https://doi.org/10.1590/S0100-67622009000600015
Tavares Júnior, I., Rocha, J., Ebling, Â., Chaves, A., Zanuncio, J., Farias, A., & Leite, H. (2019). Artificial Neural Networks and Linear Regression Reduce Sample Intensity to Predict the Commercial Volume of Eucalyptus Clones. Forests, 10(3), 268. https://doi.org/10.3390/f10030268
Vahedi, A. A. (2016). Artificial neural network application in comparison with modeling allometric equations for predicting above-ground biomass in the Hyrcanian mixed-beech forests of Iran. Biomass and Bioenergy, 88, 66–76. https://doi.org/10.1016/j.biombioe.2016.03.020
Wang, G., Zhang, M., Gertner, G. Z., Oyana, T., McRoberts, R. E., & Ge, H. (2011). Uncertainties of mapping aboveground forest carbon due to plot locations using national forest inventory plot and remotely sensed data. Scandinavian Journal of Forest Research, 26(4), 360–373. https://doi.org/10.1080/02827581.2011.564204
Wang, L. H., & Xing, Y. Q. (2008). Remote sensing estimation of natural forest biomass based on an artificial neural network. Ying yong sheng tai xue bao = The journal of applied ecology 19: 261–66.
Zhou, J., Zhou, Z., Zhao, Q., Han, Z., Wang, P., Xu, J., & Dian, Y. (2020). Evaluation of Different Algorithms for Estimating the Growing Stock Volume of Pinus massoniana Plantations Using Spectral and Spatial Information from a SPOT6 Image. Forests, 11(5), 540. https://doi.org/10.3390/f11050540
Zhu, Y., Liu, K., Liu, L., Wang, S., & Liu, H. (2015). Retrieval of Mangrove Aboveground Biomass at the Individual Species Level with WorldView-2 Images. Remote Sensing, 7(9), 12192–12214. https://doi.org/10.3390/rs70912192
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Alessandro Araujo Amaral de Almeida; Monica Fabiana Bento Moreira Thiersch; Lucas Kröhling Bernardi; Franciane Andrade de Pádua; Argemiro José Moreno Arteaga; Claudio Roberto Thiersch
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.