Redes neuronales artificiales y teledetección para la predicción volumétrica en plantaciones de Eucalyptus sp.
DOI:
https://doi.org/10.33448/rsd-v10i12.20466Palabras clave:
Inventario forestal; Aprendizaje de máquina; Redes neuronales artificiales; Plantación de Eucalyptus sp.Resumen
El inventario forestal es una herramienta importante para estimar la producción de la masa de una plantación forestal, que normalmente, es determinada empleando métodos tradicionales. Sin embargo, como resultado de los avances tecnológicos, las redes neurales artificiales y la teledetección han asumido un papel destacado en el sector forestal, ya que las imágenes de satélite tienen diferentes componentes que se correlacionan con las variables dendrométricas y pueden ser utilizadas como variables auxiliares. El objetivo de este trabajo fue evaluar el rendimiento de las redes neuronales artificiales en la estimación del volumen en una plantación de Eucalyptus sp. con el uso de imágenes de satélite. Se utilizaron datos inventariados de precorte, con edades que varían entre 5,3 y 6,3 años. Las variables utilizadas fueron volumen, edad, 4 bandas de imagen digital registrada por el satélite Sentinell-2 con resolución espacial de 10 m, relación entre las bandas, NDVI y material genético. Todo el procesamiento fue realizado con el software R de libre acceso. Los criterios de evaluación de las redes neuronales fueron el porcentaje de error estándar residual y el análisis gráfico de los residuos. La mejor configuración de red neuronal resultante para la estimación del volumen presentó un error estándar residual del 10,63% y del 12,00% para el entrenamiento y la validación, respectivamente. La metodología propuesta en este trabajo demostró ser eficiente en la estimación del volumen de la plantación.
Citas
Almeida, A. da C., Barros, P. L. C., Monteiro, J. H. A., & Rocha, B. R. P. (2009). Estimation of Aboveground Forest Biomass in Amazonia with Neural Networks and Remote Sensing. IEEE Latin America Transactions, 7(1), 27–32. https://doi.org/10.1109/TLA.2009.5173462
Araujo, T. P., & Mello, F. M. (2010). Processamento de imagens digitais - Razão entre bandas. Geociencias, 29(1), 121–131.
Assman, E. (1970). The principles of forest yield study (P. W. Davis (ed.); 1st ed.). Pergamon Press.
Bhering, L. L., Cruz, C. D., Peixoto, L. de A., Rosado, A. M., Laviola, B. G., & Nascimento, M. (2015). Application of neural networks to predict volume in eucalyptus. Crop Breeding and Applied Biotechnology, 15(3), 125–131. https://doi.org/10.1590/1984-70332015v15n3a23
Bivand, R., Keitt, T., & Rowlingson, B. (2017). rgdal: Bindings for the Geospatial Data Abstraction Library. [S.1.], 2017. R package version 1.2-8. https://CRAN.R-project.org/package=rgdal
Chiarello, F., Steiner, M. T. A., Oliveira, E. B. DE, Arce, J. E., & Ferreira, J. C. (2019). Artificial neural networks applied in forest biometrics and modeling: state of the art (january/2007 to july/2018). cerne, 25(2), 140–155. https://doi.org/10.1590/01047760201925022626
Cordeiro, A. P. A., Berlato, M. A., Fontana, D. C., Melo, R. W. de, Shimabukuro, Y. E., & Fior, C. S. (2017). Regiões homogêneas de vegetação utilizando a variabilidade do ndvi. Ciência Florestal, 27(3), 883. https://doi.org/10.5902/1980509828638
Coulibaly, L., Migolet, P., Adegbidi, H. G., Fournier, R., & Hervet, E. (2008). Mapping Aboveground Forest Biomass from Ikonos Satellite Image and Multi-Source Geospatial Data using Neural Networks and a Kriging Interpolation. IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium, III-298-III–301. https://doi.org/10.1109/IGARSS.2008.4779342
Cutler, M. E. J., Boyd, D. S., Foody, G. M., & Vetrivel, A. (2012). Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 66–77. https://doi.org/10.1016/j.isprsjprs.2012.03.011
Deb, D., Singh, J. P., Deb, S., Datta, D., Ghosh, A., & Chaurasia, R. S. (2017). An alternative approach for estimating above ground biomass using Resourcesat-2 satellite data and artificial neural network in Bundelkhand region of India. Environmental Monitoring and Assessment, 189(11), 576. https://doi.org/10.1007/s10661-017-6307-6
Del Frate, F., & Solimini, D. (2004). On Neural Network Algorithms for Retrieving Forest Biomass From SAR Data. IEEE Transactions on Geoscience and Remote Sensing, 42(1), 24–34. https://doi.org/10.1109/TGRS.2003.817220
Reis, A. A., Carvalho, M. C., de Mello, J. M., Gomide, L. R., Ferraz Filho, A. C., & Acerbi Junior, F. W. (2018). Spatial prediction of basal area and volume in Eucalyptus stands using Landsat TM data: an assessment of prediction methods. New Zealand Journal of Forestry Science, 48(1), 1. https://doi.org/10.1186/s40490-017-0108-0
Ferraz, A. S., Soares, V. P., Soares, C. P. B., Ribeiro, C. A. A. S., Binoti, D. H. B., & Leite, H. G. (2014). Estimativa do estoque de biomassa em um fragmento florestal usando imagens orbitais. Floresta e Ambiente, 21(3), 286–296. https://doi.org/10.1590/2179-8087.052213
Foody, G. M., Cutler, M. E., McMorrow, J., Pelz, D., Tangki, H., Boyd, D. S., & Douglas, I. (2001). Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Global Ecology and Biogeography, 10(4), 379–387. https://doi.org/10.1046/j.1466-822X.2001.00248.x
Frazier, R. J., Coops, N. C., Wulder, M. A., & Kennedy, R. (2014). Characterization of aboveground biomass in an unmanaged boreal forest using Landsat temporal segmentation metrics. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 137–146. https://doi.org/10.1016/j.isprsjprs.2014.03.003
Gorgens, E. B., Leite, H. G., Santos, H. do N., & Gleriani, J. M. (2009). Estimação do volume de árvores utilizando redes neurais artificiais. Revista Árvore, 33(6), 1141–1147. https://doi.org/10.1590/S0100-67622009000600016
Haykin, S. (2001a). Perceptrons de múltiplas camadas. In Redes Neurais: princípios e prática (2nd ed., pp. 182–198). Bookman.
Haykin, S. (2001b). Processos de Aprendizagem. In Redes Neurais: princípios e prática (2nd ed., pp. 75–91). Bookman.
Hijmans, R. J. (2016). raster: Geographic Data Analysis and Modeling. R package version 2.5-8. Retrieved from: https://CRAN.R-project.org/package=raster
Ingram, J. C., Dawson, T. P., & Whittaker, R. J. (2005). Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks. Remote Sensing of Environment, 94(4), 491–507. https://doi.org/10.1016/j.rse.2004.12.001
Jutras, P., Prasher, S. O., & Mehuys, G. R. (2009). Prediction of street tree morphological parameters using artificial neural networks. Computers and Electronics in Agriculture, 67(1–2), 9–17. https://doi.org/10.1016/j.compag.2009.02.008
Leal, A. J. F., Miguel, E. P., Baio, F. H. R., Neves, D. de C., & Leal, U. A. S. (2015). Redes neurais artificiais na predição da produtividade de milho e definição de sítios de manejo diferenciado por meio de atributos do solo. Bragantia, 74(4), 436–444. https://doi.org/10.1590/1678-4499.0140
Lima, M. B. de O., Lustosa-Junior, I. M., Oliveira, E. M., Ferreira, J. C. B., Soares, K. L., & Miguel, E. P. (2017). Artificial neural networks in whole-stand level modeling of Eucalyptus plants. African Journal of Agricultural Research, 12(7), 524–534. https://doi.org/10.5897/AJAR2016.12068
López-Serrano, P. M., López-Sánchez, C. A., Álvarez-González, J. G., & García-Gutiérrez, J. (2016). A Comparison of Machine Learning Techniques Applied to Landsat-5 TM Spectral Data for Biomass Estimation. Canadian Journal of Remote Sensing, 42(6), 690–705. https://doi.org/10.1080/07038992.2016.1217485
Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., & Moran, E. (2016). A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9(1), 63–105. https://doi.org/10.1080/17538947.2014.990526
Martins, E. R., Binoti, M. L. M. S., Leite, H. G., Binoti, D. H. B., & Dutra, G. C. (2016). Configuração de redes neurais artificiais para estimação da altura total de árvores de eucalipto. Revista Brasileira de Ciências Agrárias - Brazilian Journal of Agricultural Sciences, 11(2), 117–123. https://doi.org/10.5039/agraria.v11i2a5373
Miguel, E. P., Rezende, A. V., Leal, F. A., Matricardi, E. A. T., Vale, A. T. do, & Pereira, R. S. (2015). Redes neurais artificiais para a modelagem do volume de madeira e biomassa do cerradão com dados de satélite. Pesquisa Agropecuária Brasileira, 50(9), 829–839. https://doi.org/10.1590/S0100-204X2015000900012
Moreno Arteaga, A. J., Thiersch, M. F. B. M., Valente, R. O. A., Bernardi, L. K., Vasconcelos, S. L., & Thiersch, C. R. (2019). Espacialidad volumétrica de madera en plantaciones forestales usando redes neurales artificiales con imágenes de satélite. Acta Agronómica, 68(2), 142–150. https://doi.org/10.15446/acag.v68n2.78945
Nandy, S., Singh, R., Ghosh, S., Watham, T., Kushwaha, S. P. S., Kumar, A. S., & Dadhwal, V. K. (2017). Neural network-based modelling for forest biomass assessment. Carbon Management, 8(4), 305–317. https://doi.org/10.1080/17583004.2017.1357402
Oliveira, F. S. (2012). Uso de imagens do satélite ALOS para estimativa de parâmetros dendrométricos de plantios de eucalipto. Federal University of Viçosa, Viçosa, MG, Brazil.
R Core Team, 2017. R: A Language and Environment for Statistical Computing. Vienna, Austria. Retrieved from: https://www.R-project.org/
Ribeiro, B. M. G., Saito, E. A., Korting, T. S., Maeda, E. E., & Formaggio, A. R. (2009). Estudo da variância em imagens MODIS para diferentes classes de coberturas dos solos: estudo de caso em Querência – MT. In: Proceedings of the “2009 XIV Brazilian Symposium on Remote Sensing”, 25-30 April 2009, INPE, Natal, RN, Brazil, pp. 1005-1012.
Sakici, O. E., & Günlü, A. (2018). Artificial Intelligence applications for predicting some stand attributes using landsat 8 OLI satellite data: a case study from Turkey. Applied Ecology and Environmental Research, 16(4), 5269–5285. https://doi.org/10.15666/aeer/1604_52695285
Santi, E., Paloscia, S., Pettinato, S., Chirici, G., Mura, M., & Maselli, F. (2015). Application of Neural Networks for the retrieval of forest woody volume from SAR multifrequency data at L and C bands. European Journal of Remote Sensing, 48(1), 673–687. https://doi.org/10.5721/EuJRS20154837
Santi, E., Paloscia, S., Pettinato, S., Fontanelli, G., Mura, M., Zolli, C., Maselli, F., Chiesi, M., Bottai, L., & Chirici, G. (2017). The potential of multifrequency SAR images for estimating forest biomass in Mediterranean areas. Remote Sensing of Environment, 200, 63–73. https://doi.org/10.1016/j.rse.2017.07.038
Sarker, L. R., & Nichol, J. E. (2011). Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote Sensing of Environment, 115(4), 968–977. https://doi.org/10.1016/j.rse.2010.11.010
Silva, M. L. M. da, Binoti, D. H. B., Gleriani, J. M., & Leite, H. G. (2009). Ajuste do modelo de Schumacher e Hall e aplicação de redes neurais artificiais para estimar volume de árvores de eucalipto. Revista Árvore, 33(6), 1133–1139. https://doi.org/10.1590/S0100-67622009000600015
Tavares Júnior, I., Rocha, J., Ebling, Â., Chaves, A., Zanuncio, J., Farias, A., & Leite, H. (2019). Artificial Neural Networks and Linear Regression Reduce Sample Intensity to Predict the Commercial Volume of Eucalyptus Clones. Forests, 10(3), 268. https://doi.org/10.3390/f10030268
Vahedi, A. A. (2016). Artificial neural network application in comparison with modeling allometric equations for predicting above-ground biomass in the Hyrcanian mixed-beech forests of Iran. Biomass and Bioenergy, 88, 66–76. https://doi.org/10.1016/j.biombioe.2016.03.020
Wang, G., Zhang, M., Gertner, G. Z., Oyana, T., McRoberts, R. E., & Ge, H. (2011). Uncertainties of mapping aboveground forest carbon due to plot locations using national forest inventory plot and remotely sensed data. Scandinavian Journal of Forest Research, 26(4), 360–373. https://doi.org/10.1080/02827581.2011.564204
Wang, L. H., & Xing, Y. Q. (2008). Remote sensing estimation of natural forest biomass based on an artificial neural network. Ying yong sheng tai xue bao = The journal of applied ecology 19: 261–66.
Zhou, J., Zhou, Z., Zhao, Q., Han, Z., Wang, P., Xu, J., & Dian, Y. (2020). Evaluation of Different Algorithms for Estimating the Growing Stock Volume of Pinus massoniana Plantations Using Spectral and Spatial Information from a SPOT6 Image. Forests, 11(5), 540. https://doi.org/10.3390/f11050540
Zhu, Y., Liu, K., Liu, L., Wang, S., & Liu, H. (2015). Retrieval of Mangrove Aboveground Biomass at the Individual Species Level with WorldView-2 Images. Remote Sensing, 7(9), 12192–12214. https://doi.org/10.3390/rs70912192
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Alessandro Araujo Amaral de Almeida; Monica Fabiana Bento Moreira Thiersch; Lucas Kröhling Bernardi; Franciane Andrade de Pádua; Argemiro José Moreno Arteaga; Claudio Roberto Thiersch

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.