Remotely Piloted Aircraft (RPA) for pesticides application

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20573

Keywords:

RPA; Flight height; Water sensitive papers.

Abstract

The use of remote systems for the application of pesticides is growing, however, there is a lack of studies related to the subject. The present work aimed to develop and evaluate a remotely piloted aircraft (RPA) for the application of pesticides. Initially, the RPA was designed, and it was built with 5 mm extruded polystyrene and t7 Styrofoam. After the construction of the RPA, a hydraulic spraying system consisting of a hydraulic pump was installed; Tank with capacity of 0.350 L and Jacto® spray nozzles, empty cone, model JD12P. Subsequently, application efficiency tests were carried out. An experiment was set up, under laboratory conditions, in a completely randomized design, in a factorial scheme (3x7), three flight heights (1.0, 2.0 and 3.0 m) and seven positions of water sensitive papers in the soil ( -1.5; -1.0; -0.5; 0.0; +0.5; +1.0 +1.5 m). The sprayer was previously checked for liquid flow and flight speed, which presented values ​​of 0.160 L min-1 per spray nozzle and flight speed of 20 km h-1, respectively. The sprays were carried out at these heights, at the 0.0 position. The reference with a negative sign refers to the left-hand position of the travel direction and the positive signs to the right-hand position of the travel direction. After spraying, the tags were scanned and submitted for analysis. The RPA showed better target deposition characteristics when operated at a flight height of 1 m. The system allows application in areas located mainly in large perennial plants.

References

Ahmad, F., Qiu, B., Dong, X., Ma, J., Huang, X., Ahmed, S. & Chandio, F. A. (2020). Effect of operational parameters of UAV sprayer on spray deposition pattern in target and off-target zones during outer field weed control application. Computers and Electronics in Agriculture, 172, 1-10.

Anac (2017). Regulamento Brasileiro da Aviação Civil nº 94. Agência Nacional de Aviação Civil. Requisitos Gerais para Aeronaves Não Tripuladas de Uso Civil. Emenda 00, Brasília. 2017.

Andrade, J. M. A., Pretto, D., Carvalho, E., Bolonhezi, D., Scarpelline, J. R. & Vieira, B. C. (2018). Avaliação de RPAs para pulverização em diferentes culturas. Revista Ingeniería y Región, 20, 73-78.

Assaiante, B. A. S. & Cavichioli, F. A. (2020). A utilização de veículos aéreos não tripulados (VANT) na cultura da cana-de-açúcar. Revista Interface Tecnológica, 17(1), 444 – 455.

Costa, A. G. F., Veline, E. D., Negrisoli, E., Carbonari, C. A., Rossi, C.V.S. & Silva, F. M. L. (2007). Efeito da intensidade do vento, da pressão e de pontas de pulverização na deriva de aplicações de herbicidas em pré-emergência. Planta daninha, 25(1), 203-210.

Ferreira, M. C., Leite, G. J. & Lasmar, O. (2013). Cobertura e depósito de calda fitossanitária em plantas de café pulverizadas com equipamento original e adaptado para plantas altas. Bioscience Journal, 29, 1539-1548.

Gao, J., Liao, W., Nuyttens, D., Lootens, P., Vangeyte, J., Pizurica, A., He, Y. & Pieters, J. (2018). Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery. International Journal of Applied Earth Observation and Geoinformation, 67, 43-53.

Koche, J. C. (2011). Fundamentos de metodologia científica. Vozes.

Kullmann, S. E. & Dias, V. O. (2020). Uniformidade de distribuição volumétrica de duas pontas de pulverização sob efeito da assistência a ar na barra. Energia na Agricultura, 35 (3), 339-351.

Luchetti, A. (2019). Utilização de drones na agricultura: impactos no setor sucroalcooleiro. Monografia (Bacharel em Ciências Aeronáuticas) - Universidade do Sul de Santa Catarina.

Maciel, C. F. S., Teixeira, M. M., Fernandes, H. C., Vitório, E. L. & Cecon, P. R. Revista Engenharia na Agricultura, 25(3), 183-199.

Martin, D., Woldt, W. & Latheef, M. (2019). Effect of Application Height and Ground Speed on Spray Pattern and Droplet Spectra from Remotely Piloted Aerial Application Systems. Drones. 83(4), 1 - 21.

Massola, M. P., Holtz, V., Martins, M. P. O., Umbelino, A. S. & Reis, E. F. (2018). Spray volume distribution pattern and droplet size spectrum from ceramic nozzles. Agriambi, 22(11), 804-809.

Rokhmana, C. A. (2015). The potential of UAV-based remote sensing for supporting precision agriculture in Indonesia. Procedia Environmental Sciences, 24, 245 – 253.

Sasaki, R. S., Teixeira, M. M., Maciel, C. F. S., Alvarenga, C. B. & Forastieri, P. R. (2016). Espectro das gotas produzidas por pontas de jato plano duplo defasado com indução de ar. Engenharia na Agricultura, 24 (3), 211-218.

Sasaki, R. S., Teixeira, M. M., Fernandes, H. C., Zolnier, S., Maciel, C. F. S. & Alvarenga, C. B. (2016). Droplets spectrum of air-assisted boom sprayers under different environmental and operational conditions. Agriambi, 20(1), 92-96.

Shan, C., Wang, G., Wang, H., Xie, Y., Wang, H., Wang, S., Chen, S. & Lan, Y. (2021). Effect of droplet size and spray volume parameters on droplet deposition of wheat herbicide application by using UAV. International Journal of Agricultural and Biological Engeneering. 14(1), 74-81.

Sindag (2017). Relatório de Atividades – Brasil 2016. http://sindag.org.br/wp-content/uploads/2016/12/SINDAG-Relatorio-de-Atividades-Abril2016.pdf

Verger, A., Vigneau, N., Chéron, C., Gilliot, J, Comar, A., Baret, F. (2014). Green area index from an unmanned aerial system over wheat and rapeseed crops. Remote Sensing of Environment, 152, 654-664.

Vieira, L. C., Godinho Junior, J. D., Ruas, R. A. A., Faria, V. R. & Carvalho Filho, A. (2019). Interações entre adjuvante e pontas hidráulicas no controle da deriva de glifosato. Energia na Agricultura, 34(3), 331 – 340.

Wen, S., Zhang, Q., Deng, J., Lan, Y., Yin, X. & Shan, J. (2018). Design and Experiment of a Variable Spray System for Unmanned Aerial Vehicles Based on PID and PWM Control. Applied Sciences. 8, 1-22.

Published

21/09/2021

How to Cite

SILVA NETO, J. O.; SASAKI, R. S.; ALVARENGA, C. B. de. Remotely Piloted Aircraft (RPA) for pesticides application. Research, Society and Development, [S. l.], v. 10, n. 12, p. e293101220573, 2021. DOI: 10.33448/rsd-v10i12.20573. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20573. Acesso em: 2 jan. 2025.

Issue

Section

Agrarian and Biological Sciences