Primary metabolism and initial development of grafted black pepper seedlings

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.20690

Keywords:

Piper nigrum; ‘Bragantina’ ('Panniyur 1'); 'Kottanadan'; Piper hispidum; Piper aduncum; Piper tuberculatum.

Abstract

The production of black pepper seedlings through grafting is a promising strategy to mitigate the effect of environmental stresses, such as drought, that limit its cultivation. However, studies on compatibility between grafts and rootstocks are still scarce, especially considering the wild species of the genus Piper and the cultivated genotypes of black pepper. The objective of this work was to evaluate the relationship between primary metabolism and the development of black pepper seedlings obtained through intra- and interspecific grafting. The method used was that of cleft lateral grafting, as graft the Bragantina cultivar, better known in the world as ‘Panniyur 1’, and ‘Kottanadan’ cultivar and three wild species (Piper hispidum, Piper aduncum and Piper tuberculatum) were used as root-stock. As a control, ´Bragantina` was grafted onto itself (homograft). The experiment was carried out for 110 days and the seedlings were evaluated for development, gas exchange, and carbohydrate allocation. The rootstock influences the development and primary metabolism of seedlings. P. aduncum showed greater initial compatibility among wild species, due to less impediment to carbohydrate flow. P. tuberculatum showed early incompatibility, as the grafts died. The seedlings grafted on P. hispidum and 'Kottanadan' had initial compatibility with an average of 78% survival and 60% budding, but they may have late incompatibility due to limitation of carbohydrate flow.

References

Aarthi, S., & Kumar, N. (2019). Stenting Propagation-A Method in Black Pepper (Piper nigrum L.) Using Wild Species of Piper as Rootstock. International Journal of Innovative Horticulture, 8(1), 35-39.

Adams, S., Lordan, J., Fazio, G., Bugbee, B., Francescatto, P., Robinson, T. L., & Black, B. (2018). Effect of scion and graft type on transpiration, hydraulic resistance and xylem hormone profile of apples grafted on Geneva® 41 and M. 9-NIC™ 29 rootstocks.Scientia horticulturae,227, 213-222.

Albrecht, U., Tripathi, I., Kim, H., & Bowman, K. D. (2019). Rootstock effects on metabolite composition in leaves and roots of young navel orange (Citrus sinensis L. Osbeck) and pummelo (C. grandis L. Osbeck) trees. Trees, 33(1), 243-265.

Albuquerque, F. C. D., Duarte, M. D. L. R., Benchimol, R. L., & Endo, T. (2001). Resistência de piperáceas nativas da Amazônia à infecção causada por Nectriahaematococcaf. sp. piperis. Acta Amazonica, 31(3), 341-341.

Alconero, R., Albuquerque, F., Almeyda, N., & Santiago, A. G. (1972). Phytophthora foot rot of black pepper in Brazil and Puerto Rico.Phytopathology,62(1), 144-148.

Ambrozim, C. S., Furtado, J. G., Valani, R. S., Posse, R. P., Varnier, E., Posse, S. C. P., Dousseau, S., Arantes, L. & de O. Oliveira, E. C. (2017). Propagação de pimenta do reino em diferentes concentrações de ácido indolbutírico. Revista Ifes Ciência, 3(2),17-28.

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15.

Amri, R., Fonti, F. C., Giménez, R., Pina, A., & Moreno, M. Á. (2021). Biochemical Characterization and Differential Expression of PAL Genes Associated With “Translocated” Peach/Plum Graft-Incompatibility. Frontiers in plant science, 12, 177.

Barriga, R. H. (1982). Pimenta-do-reino: origem e distribuição geográfica, caracteres botânicos e melhoramento genético. EMBRAPA/ CPATU.

Bastos, C. N., & Santos, A. O. D. S. (2016). Porta-enxerto resistente a fusariose em pimenta-do-reino. Agrotropica, 28(2), 331-334.

Baron, D., Amaro, A. C. E., Pina, A., & Ferreira, G. (2019). An overview of grafting re-establishment in woody fruit species. Scientiahorticulturae, 243, 84-91.

Baron, D., Saraiva, G. F. R., Amador, T. S., Rodrigues, J. D., Goto, R., & Ono, E. O. (2018). Anatomical and physiological aspects of cucumber graft. Comunicata Scientiae, 9(2), 282-286.

Chinnapappa, M., Ramar, A., Pugalendhi, L., Muthulakshmi, P., &Vetrivelkalai, P. (2019). Screening of Piper Species for Resistance to Quick Wilt caused by Phytophthoracapsici under Glasshouse Condition. Madras Agricultural Journal, 6, 77-84.

Daley, S. L., & Hassell, R. L.(2014). Fatty alcohol application to control meristematic regrowth in bottle gourd and interspecific hybrid squash rootstocks used for grafting watermelon. HortScience, 49(3), 260-264.

Dalzochio, O. Â., Silvestre, W. P., & Pauletti, G. F. (2021). Effect of the application of prohexadione-calcium on the growth of ‘Packham’s Triumph’and ‘Hosui’pears (Pyrus communis L.). Research, Society and Development, 10(8), e3110816801-e3110816801.

De Paiva, E. P., Rocha, R. H. C., Sousa, F. A., Nobre, R. G., Guedes, W. A., Moreira, I. S., & Sá, F. V. S. (2015). Crescimento e fisiologia de mudas de romãzeira cv. Wonderful propagadas por enxertia. Revista Brasileira de Ciências Agrárias, 10, 117-122.

Dias, F. P., C, A. M., Mendes, A. N. G., Vallone, H. S., Ferreira, A. D., & De Rezende, J. C. (2013). Desenvolvimento de mudas de cultivares de café arábica enxertadas sobre Apoatã IAC 2258. Semina: Ciências Agrárias, 34(1), 29-36.

Dousseau, S., Alvarenga, A. A. D., Alves, E., Chaves, I. D. S., Souza, E. D. S., &Alves, J. D. S. (2011). Características fisiológicas, morfológicas e bioquímicas da propagação sexual de Piper aduncum (Piperaceae). Brazilian Journal of Botany, 34(3), 297-305.

FAO. Food and Agriculture of the United Nations. (2017). StatisticalDatabases. http://www.fao.org/faostat/en/

FERREIRA, D. F. (2011).Sisvar: a computerstatisticalanalysis system. Ciência e Agrotecnologia (UFLA).

Ferriani, A. P., &Krinski, D. (2019). Effect of cuttings defoliation and different substrates on the vegetative propagation of the monkey-pepper (Piper aduncum L.) (Piperaceae). Revista Colombiana de Ciencias Hortícolas, 13(1), 130-136.

Foster, T. M., McAtee, P. A., Waite, C. N., Boldingh, H. L., & McGhie, T. K. (2017). Apple dwarfing rootstocks exhibit an imbalance in carbohydrate allocation and reduced cell growth and metabolism. Horticultureresearch, 4(1), 1-13.

Franco, D. A., Arango, J. F., Hurtado-Salazar, A., &Ceballos-Aguirre, N. (2018). Development, production, and quality of ‘Chonto’type tomato grafted on cherry tomato introductions. Revista Ceres, 65(2), 150-157.

Franck, N., Zamorano, D., Wallberg, B., Hardy, C., Ahumada, M., Rivera, N., Montoya, M., Urra, C., Meneses, C., Balic, I., Mejía, N., Ibacache, A., & Zurita-Silva, A. (2020).Contrasting grapevines grafted into naturalized rootstock suggest scion-driven transcriptomic changes in response to water deficit. ScientiaHorticulturae, 262, 1-12.

Garner, R., &Beakbane, A. (1968). A Note on the Grafting and Anatomy of Black Pepper. Experimental Agriculture, 4(3), 187-192.

Goldschmidt, E. E. (2014). Plant grafting: new mechanisms, evolutionary implications. Frontiers in plant Science, 5, 1-9.

Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologiaelectronica, 4(1), 9.

IBGE. Instituto Brasileiro de Geografia e Estatística-IBGE. (2018). Produção Agrícola nacional e regional. https://sidra.ibge.gov.br/Tabela/1613

Ibrahim, M. H., Jaafar, H. Z., & Harun, M. H. (2017). Leaf Gas Exchange and Stomata Properties of Oil Palm Seedlings (Elaeisguineensis Jacq.) Progenies Exposed to Elevated Carbon Dioxide. Annual Research & Review in Biology, 19(4) 1-13.

Joshi, D. R., Shrestha, A. C., & Adhikari, N. (2018). A review on diversified use of the king of spices: Piper nigrum (black pepper). IJPSR, 9(10), 4089-4101.

Khayatnezhad, M., & Nasehi, F. (2021). Industrial pesticides and a methods assessment for the reduction of associated risks: a Review. Advancements in Life Sciences, 8(2), 202-210.

Kiran, S., Bakhs, H. A., Iqbal, J., Iqbal, A., Raza, S., Ahmad, N., Ali, M. A., Danish, S. (2019). Effect of changing weather on success of wedge and veneer grafting and chlorophyll content in mango cv. SufaidChaunsa. International Journal of Biosciences,14(2), 91-99.

Köppen, W. (1936). Das geographische system der klimat. in: Köppen, G. W & Geiger, M. R. (Eds.), Handbuch der Klimatologie. Berlin: Gebrüder Bornträger, 1–44.

Kulaç, Ş., & Nayir, H. N. (2021). Determinação da adaptação de enxerto de alguns genótipos de castanha (Castanea sativa Mill.) Com a cultivar Marigoule (C. Sativa × C. Crenata). Turkish Journal of Agriculture-Food Science and Technology, 9 (8), 1555-1559.

Lakshmana, M., Hanumanthappa, M., & Sunil, C. (2016). “Effect of propagation method on successful growth performance of pepper plants”. In: Malhothra, S K, Kandiannan, K., Raj, K. M., Neema, V. P., Prasath, Srinivasan, D, Femina, H. C. V. Advances in planting material production technology in spices, Directorate of Arecanut and Spices Development, Kohzikode, Kerala, India. 18(4), 124-129.

Li, W., Fang, C., Krishnan, S., Chen, J., Yu, H., Murphy, A. S., Merewitz, E., Katin –Grazzini, L., Mcavoy, R. J., Deng, Z., Zale, J., & Li, Y. (2017). Elevated auxin and reduced cytokinin contents in rootstocks improve their performance and grafting success. Plant biotechnology journal, 15(12), 1556-1565.

Machado, B. D., Magro, M., Rufato, L., Bogo, A., &Kreztschmar, A. A. (2017). Graft compatibility between European pear cultivars and East Malling “C” rootstock. RevistaBrasileira de Fruticultura, 39(3), 1-9.

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), 426-428.

Priyanka, A., Sujatha, K. B., Sivakumar, T., & Rajasree, V. (2019). Morphological changes in the compatible grafts of tomato cv. PKM 1 with different solanaceous rootstocks. Journal of Pharmacognosy and Phytochemistry, 8(3), 2416-2419.

Poorni, S., Priya, M., Rebecca, L. J., & Sharmila, S. Partial Purification of Protease from Seaweed. International Journal of Applied Biotechnology and Biochemistry, 2(1), 81-85.

Rodriguez-Amaya, D. B., & Kimura, M. (2004). HarvestPlus Handbook for Carotenoid Analysis. Washington: International Food Policy Research Institute (IFPRI).

Rouphael, Y., Kyriacou, M. C., & Colla, G. (2018). Vegetable grafting: A toolbox for securing yield stability under multiple stress conditions. Frontiers in plant science, 8, 2255.

Schmildt, E. R., Arantes, L. De O., Hell, L. R., Lavanhole, D. F., &Schmildt. O. (2018). Variedades de pimenta-do-reino. In: Silva. M.B., Da vitória, E. L. Campanharo, A. Cultura da pimenta-do-reino, Araçá.

Tamilselvi, N. A., &Pugalendhi, L. (2017). Graft compatibility and anatomical studies of bitter gourd (Momordica charantia L.) scions with cucurbitaceous rootstocks. International Journal of Current Microbiology and Applied Sciences, 6(2), 1801-1810.

Thies, J. A. (2021). Grafting for managing vegetable crop pests. Pest Management Science, 77, 4825-4835.

Trindade, R., Almeida, L., Xavier, L., Andrade, E. H., Maia, J. G., Mello, A., William N., Ramos, A., da Silva, J. K. R. (2021). Influence on Secondary Metabolism of Piper nigrum L. by Co-Inoculation with Arbuscular Mycorrhizal Fungi and Fusarium solani f. sp. piperis. Microorganisms, 9(3), 484.

Vanaja, T., Neema, V. P., Rajesh, R., & Mammootty, K. P. (2007). Graft recovery of Piper nigrum L. runner shoots on Piper colubrinum Link. rootstocks as influenced by varieties and month of grafting. Journal of Tropical Agriculture, 45, 61-62.

Vidoy-Mercado, I., Narváez, I., Palomo-Ríos, E., Litz, R. E., Barceló-Muñoz, A., & Pliego-Alfaro, F. (2021). Reinvigoration/Rejuvenation Induced through Micrografting of Tree Species: Signaling through Graft Union. Plants, 10(6), 1197.

Wendling, I., Stuepp, C. A., & Zuffellato-Ribas, K. C. (2016). Araucaria angustifolia grafting: techniques, environments and origin of propagation material. Bosque, 37(2), 285-293.

Williams, B., Ahsan, M. U., & Frank, M. H. (2021). Getting to the root of grafting-induced traits. Current Opinion in Plant Biology, 59, 101988.

Yemm, E. W., & Willis, A. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical journal, 57(3), 508-514.

Zanandrea, I., Bacarin, M. A., Braga, E. J. B., Bianchi, V. J., & Peters, J. A. (2009). Morphological and physiological photon flux influence under in vitro culture of apple shoots. Brazilian Archives of Biology and Technology, 52(5), 1091-1098.

Zarrouk, O., Testillano, P. S., Risueño, M. C., Moreno, M. Á., & Gogorcena, Y. (2010). Changes in cell/tissue organization and peroxidase activity as markers for early detection of graft incompatibility in peach/plum combinations. Journal of the American Society for Horticultural Science, 135(1), 9-17.

Zheng, Y., Li, F., Hao, L., Yu, J., Guo, L., Zhou, H., Ma, C., Zhang, X., & Xu, M. (2019). Elevated CO2 concentration induces photosynthetic down-regulation with changes in leaf structure, non-structural carbohydrates and nitrogen content of soybean. BMC plant biology, 19(1), 1-18.

Downloads

Published

08/11/2021

How to Cite

CRASQUE, J.; ARANTES, S. D.; CERRI NETO , B. .; PINTO, M. L. P. B. .; ARANTES, L. de O. .; FERREIRA, T. R. .; MACHADO FILHO, J. A. Primary metabolism and initial development of grafted black pepper seedlings. Research, Society and Development, [S. l.], v. 10, n. 14, p. e425101420690, 2021. DOI: 10.33448/rsd-v10i14.20690. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20690. Acesso em: 2 jan. 2025.

Issue

Section

Agrarian and Biological Sciences