Sources of non-ionizing radiation and cases of childhood leukemia: an integrative review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i13.20745

Keywords:

Electromagnetic fields; Electromagnetic Fields; Leukemia; Radiation, Nonionizing; Campo Eletromagnético; Leucemia; Radiação não Ionizante; Leukemia; Radiation, nonionizing.

Abstract

Introduction: Childhood leukemia is considered the most common cancer in children from 0 to 14 years old and it is related to genetics factors and, more strongly, to environmental factors, among which low-frequency non-ionizing radiation has been studied as a risk factor. Objective: To analyze scientific evidence on the association between low-frequency non-ionizing radiation sources and the occurrence of childhood leukemia. Methodology: Integrative review, whose terms were the descriptors Electromagnetic Fields and Leukemia, from Medical Subject Headings, for search in PubMed, Elsevier's Scopus and Web of Science, and Magnetic Fields and Leukemia, from Descriptors in Health Sciences, for search in the Virtual Health Library. Two researchers selected full articles from case-control studies published from 2010 to 2020. The Rayyan QCRI software was used to analyze the articles. Results: Five articles that met the proposed methodological design were analyzed. The articles were published in English, from 2012 to 2020, and study participants were under 16 years of age. The designs of the methods for assessing exposure were heterogeneous, as was the environment analyzed. The limitations of the studies were due to the lack of evaluation of other potential external sources for the development of childhood leukemia. Conclusion: It is noteworthy that exposure to electromagnetic fields occurs from different sources and the physiological effects still need to be better explored. Robust studies are needed to analyze low frequency electromagnetic fields as a possible carcinogen to humans. Due to methodological heterogeneity and confounding variables in the analyzed articles, the authors concluded that it was not possible to demonstrate the relationship between low-frequency non-ionizing radiation sources and the development of childhood leukemia.

Author Biographies

Cyntia Maria Moreira Herkert, Faculdade Estácio Campo Grande

Faculdade Estácio Campo Grande

Andréia Insabralde de Queiroz Cardoso, Universidade Federal de Mato Grosso do Sul

Instituto Integrado de Saúde - Universidade Federal de Mato Grosso do Sul

Alexandra Maria Almeida Carvalho Carvalho, Universidade Federal de Mato Grosso do Sul

Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste - Faculdade de Medicina - Universidade Federal de Mato Grosso do Sul

References

Auger, N., Bilodeau-Bertrand, M., Marcoux, S., & Kosatsky, T. (2019). Residential exposure to electromagnetic fields during pregnancy and risk of child cancer: A longitudinal cohort study. Environmental research, 176, 108524. https://doi.org/10.1016/j.envres.2019.108524

Belson, M., Kingsley, B., & Holmes, A. (2007). Risk factors for acute leucemia in children: a review. Environmental Health Perspectives, 115(1), 138-145. https://doi.org/10.1289/ehp.9023

Calvente, I., Fernandez, M. F., Villalba, J., Olea, N., & Nuñez, M. I. (2010). Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: A systematic review. Science of the Total Environment, 408(16), 3062-3069. https://doi.org/10.1016/j.scitotenv.2010.03.039

Carpenter, D. O. (2019). Extremely low frequency electromagnetic field cancer: How source of funding affects results. Environmental Reserch, 178, 108688. https://doi.org/10.1016/j.envres.2019.108688

Coebergh, J. W. W., Reedij, A. M. J., De Vries, E., Martos, C., Jakab, Z., Steliarova-Foucher, E., & Kamp, W. A. (2006). Leukemia incidence and survival in children and adolescents in Europe during 1978-1997. Report from the automated childhood cancer information system project. European Journal of Cancer, 42, 2019-2036. https://doi.org/10.1016/j.ejca.2006.06.005

Curtin. K., Smith, K. R., Fraser, A., Pimentel, R., Kohlmann, W., & Schiffman, J. D. (2013). Familial risk of childhood cancer and tumors in the Li-Fraumeni spectrum in the Utah Population Database: Implications for genetic evaluation in pediatric practice. The International Journal of Cancer, 133(10): 2444–2453. https://doi.org/10.1002/ijc.28266

Diab, K. A. (2020). The impact of the low frequency of the electromagnetic field on human. Advances in Experimental Medicine and Biology, 1237, 135-149. https://doi.org/10.1007/5584_2019_420

Donato, H., & Donato, M. (2019). Etapas na condução de uma revisão sistemática. Acta Médica Portuguesa, 32(3), 227-235. https://doi.org/10.20344/amp.11923

Greenland, S., Sheppard, A. R., Kaune, W. T., Poole, C., & Kelsh, M. A. (2000). A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Epidemiology, 11(6), 624-634. https://doi.org/10.197/00001648-200011000-00003

Grellier, J., Ravazzani, P., & Cardis, E. (2014) Potential health impacts of residential exposure to extremely low frequency magnetic fields in Europe. Environment International, 62, 55-63. https://doi.org/10.1016/j.envint.2013.09.017

Instituto Nacional de Câncer José Alencar Gomes da Silva. Tipos de câncer (21019). Rio de Janeiro: INCA. https://www.inca.gov.br/tipos-de-cancer.

International Agency for Research on Cancer (2002). Non-Ionizing radiation, Part 1: Static and extremely low-frequency (ELF) electric and magnetic. IARC Monographs Evalution Carcinogenic Risk to Human, 80.

Jin, M. W., Xu, S. M., An, Q., & Wang, P. (2016). A review of risk factors for childhood leucemia. European Review for Medical and Pharmacological Sciences, 20(18), 3760-3764. https://www.europeanreview.org/article/11444

Jirik, V., Pekarek, L., Janout, V., & Tomaskova, H. (2012). Association between childhood leukaemia and exposure to power-frequency magnetic Fields in Middle Europe. Biomedical and Environmental Sciences, 25(5), 597-601. https://doi: 10.3967/0895-3988.2012.05.015

Karimi, A., Moghaddam, F. G., & Valipour, M. (2020). Insights in the biology of extremely low‑frequency magnetic Fields exposure on human health. Molecular Biology Reports, 47(7), 5621-5633. https://doi.org/10.1007/s11033-020-05563-8

Kaszuba-Zwoinska, J., Gremba, J., Galdzinska-Calik, B., Wójcik-Piotrowicz, K., & Thor, J. P. (2015). Electromagnetic field induced biological effects in humans. Przegl Lek, 72(11), 636–641. https://pubmed.ncbi.nlm.nih.gov/27012122/

Kheifets, L., Crespi, C. M., Hooper, C., Cockburn, M., Amonn, A. T., & Vergara, X. P. (2017). Residential magnetic fields exposure and childhood leukemia: a population-based case–control study in California. Cancer Causes & Control, 28(10), 1117-1123. https://doi.org/10.1007/s10552-017-0951-6

Maia, R. R. P. & Filho, V. W. (2013). Infection and childhood leukemia: review of evidence. Revista de Saúde Pública, 47(6), 1172-1185. https://doi.org/10.1590/S0034-8910.2013047004753

Marcilio, I., Habermann, M., & Gouveia, N. (2009). Campos magnéticos de frequência extremamente baixa e efeitos na saúde: revisão de literatura. Revista Brasileira de Epidemiologia, 12(2), 105-123. https://doi.org/10.1590/s1415-790x2009000200002

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The Prisma Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine, 6(7), 1-6. https://doi.org/10.1371/journal.pmed.1000097

Núñez-Enríquez, J. C., Correa-Correa, V., Flores-Lujano, J., Pérez-Saldivar, M. L., Jiménez-Hernández, E., Martín-Trejo, J. A., Espinoza-Hernández, L. E., Medina-Sanson, A., Cárdenas-Cardos, R., Flores-Villegas, L. V., Peñaloza-González. J. G., Torres-Nava, J. R., Espinosa-Elizondo, R. M., Amador-Sánchez, R., Rivera-Luna, R., Dosta-Herrera, J. J., Mondragón-Garcia, J. A., González-Ulibarri, J. E., Martínez-Silva, S. I., Espinoza-Anrubio, G., Duarte-Rodríguez, D. A., García-Cortés, L. R., Gil-Hernández, A. E., & Mejía-Aranguré, J. M. (2020). Extremely low-frequency magnetic fields and the risk of childhood B‐lineage acute lymphoblastic leukemia in a city with high incidence of leukemia and elevated exposure to ELF Magnetic Fields. Bioelectromagnetics, 41(8), 581-597. http://doi.org/10.1002/bem.22295

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, 5(1). https://doi.org/10.1186/s13643-016-0384-4

Pedersen, C., Raaschou-Nielsen, O., Rod, N. H., Frei, P., Poulsen, A. H., Johansen, C., & Schu, J. (2014). Distance from residence to power line and risk of childhood leukemia: a populationbased case-control study in Denmark. Cancer Causes Control, 25(2), 171–177. https://doi.org/10.1007/s10552-013-0319-5

Pedersen, C., Johansen, C., Schuz, J., Olsen, J. H., & Raaschou-Nielsen, O. (2015). Residential exposure to extremely low-frequency magnetic fields and risk of childhood leukaemia, CNS tumour and lymphoma in Denmark. British Journal of Cancer, 13, 1370-1374. http://doi.org/10.1038/bjc.2015.365

Pelissari, D. M., Barbieri, F. E., & Wünsch Filho, V. (2009). Magnetic Fields and acute lymphoblastic leucemia in children: a systematic review of case-control studies. Caderno de Saúde Pública, 25(3), S441-S452. https://doi.org/10.1590/S0102-311X2009001500009

Salvan, A., Ranucci, A., Lagorio, S., Magnani, C., % Em nome do SETIL Research Group. (2015). Childhood leucemia and 50 Hz magnetic Fields: findings from the Italian SETIL case-control study. International Journal of Environmental Research and Public Health, 12(2), 2184-2204. https://doi.org/10.3390/ijerph120202184

Saliev, T., Begimbetova, D., Masoud, A., & Matkarimov, B. (2018). Biological effects of non-ionizing electromagnetic field: Two sides of a coin. Progress in Biophysics and Molecular Biology, 141, 25-36. https://doi.org/10.1016/j.pbiomolbio.2018.07.009

Scarfi, M. R., Mattsson, M., Simkó, M., & Zeni, O. (2019). Special Issue: “Electric, Magnetic, and Electromagnetic Fields in Biology and Medicine: From Mechanisms to Biomedical Applications”. International Journal of Environmental Research and Public Health, 16(22), 4548. https://doi.org/10.3390/ijerph16224548

Scientific Committee on Emerging Newly Identified Health Risks (2015). Opinion on potential Health Effects of Exposureto Electromagnetic Fields. Bioelectromagnetics, 36(6), 480-484. https://doi.org/10.1002/bem.21930

Stillwell, S., Fineoutr-Overholt, E., Melnyk, B., & Wiliiamson, K. (2010). Evidence-based practice, step by step: searching for the evidence. Journal of Advanced Nursing, 110(5), 41-47. https://doi.org/10.1097 / 01.NAJ.0000372071.24134.7e

Wertheimer, N., & Leeper, E. (1979). Electrical wiring configurations and childhood cancer. American Journal of Epidemiology, 109(3), 273-284. https://doi.org/10.1093/oxfordjournals.aje.a112681

Whitehead, P., Metayer, C., Wiemels, J. L., Singer, A, W., & Miller, M. D. (2016). Childhood Leukemia and Primary Prevention. Current Problems Pediatric Adolescent Health Care, 46(10), 317–352. https://doi.org/10.1016/j.cppeds.2016.08.004

Whittemore, R., & Knafl, K. (2005). The integrative review: updated methodology. Journal of Advanced Nursing, 52(5), 546-553. https://doi.org/10.1111/j.1365-2648.2005.03621.x

Published

03/10/2021

How to Cite

HERKERT, C. M. M.; CARDOSO, A. I. de Q. .; CARVALHO, A. M. A. C. Sources of non-ionizing radiation and cases of childhood leukemia: an integrative review. Research, Society and Development, [S. l.], v. 10, n. 13, p. e19101320745, 2021. DOI: 10.33448/rsd-v10i13.20745. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20745. Acesso em: 8 dec. 2021.

Issue

Section

Health Sciences