Identification and resistance profile of gram positive bacteria from aquatic environment

Authors

DOI:

https://doi.org/10.33448/rsd-v10i13.21182

Keywords:

Correlation; Drugs; Pan drug; Resistance genes.

Abstract

The Meia Ponte River – Goiás/Brazil, is responsible for benefiting about 2 million people in Goiás State. However, the increase in pollution with the disposal of sewage, chemicals and drug remains have contributed to the increase in bacterial resistance and the exchange of resistance genes. The objective of this study was to isolate, identify and analyze the resistance profile of gram-positive bacteria present in raw water and sediment of the Meia Ponte River – Goiás. The samples were collected from four sampling points and two collections were carried out, one in the dry season and the other in the rainy season. The isolated bacteria were identificated, then the antibiogram was performed. A total of 75 strains were isolated, 72.0% (54/75) of Streptococcus spp., 12.0% (9/75) of Staphylococcus spp., 9.3% (7/75) of Bacillus spp. and 6.7% (5/75) of Enterococcus spp. Furthermore, 52.0% (39/75) of the isolated strains were from raw water and 48.0% (36/75) were isolated from the sediment. Among the samples, strains of Staphylococcus spp. and Bacillus spp. showed greater resistance to antimicrobials, on the other hand, Enterococcus spp. showed less resistance. Some strains of Bacillus spp. and Streptococcus spp. presented multidrug resistant, Staphylococcus spp. showed multidrug resistant and some pan-drug resistant. In the correlation of Spearman Staphylococcus spp. and Streptococcus spp. isolated, were the ones that presented the most significant correlations (p < 0.05). Thus, the study shows the importance of ascertaining the resistance profile of this group of bacteria that aquatic environment.

References

Adesakin, T. A., Oyewale, A. T., Bayero, U., Mohammed, A. N., Aduwo, I. A., Ahmed, P. Z., Abubakar, N. D., &Barje, I. B. (2020). Assessment of bacteriological quality and physico-chemical parameters of domestic water sources in Samaru community, Zaria, Northwest Nigeria. Heliyon, 6(8), 1–13. https://doi.org/10.1016/j.heliyon.2020.e04773

Aditi, F. Y., Rahman, S. S., & Hossain, M. M. (2017). A Study on the Microbiological Status of Mineral Drinking Water. The Open Microbiol J, 11(1), 31–44. https://doi.org/10.2174/1874285801711010031

Amarasiri, M., Sano, D., & Suzuki, S. (2019). Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Crit Rev Sci Environ Technol, 50(19), 2016–2059. https://doi.org/10.1080/10643389.2019.1692611

ANVISA. (2005). Performance Standards for Testing Antimicrobial Sensitivity: 15th Information Supplement (2005). Agência Nacional de Vigilância Sanitária, Brazil (ANVISA), 25 n° 1, 1–177.

ANVISA. (2013). Manual de Microbiologia Clínica para o Controle de Infecções Relacionadas à Assistência à Saúde. Módulo 6: Detecção e identificação e bactérias de importância médica. Agência Nacional de Vigilância Sanitária, Brazil (ANVISA), 6, 1–93.

APHA. (2017). Standard Methods for the examination of water and wastewater - Twenty Third Edition. American Public Health Association (APHA), 23, 1-1546.

Asma, R., Alam, Md. J., Rahimgir, M., Asaduzzaman, M., Islam, A. M., Uddin, N., Khan, Md. S. I., Jahan, N.-W.-B., Siddika, S. S., & Datta, S. (2019). Prevalence of Multidrug-Resistant, Extensively Drug-Resistantand Pandrug-Resistant Uropathogens Isolated From UrinaryTract Infection Cases in Dhaka, Bangladesh. Avicenna J Clin Microbiol Infect, 6(2), 44–48. https://doi.org/10.34172/ajcmi.2019.09

Bailão, E. F. L. Cardoso., Zago, L. M. Sousa., Silva, N. C., Machado, K. B., D’Abadia, P. L., Oliveira, P. H. F., Nabout, J. C., & Almeida, L. M. (2020). Urban occupation increases water toxicity of an important river in central Brazil. J Soc Technol Environ Sci - Fronteiras, 9(1), 73–86. https://doi.org/10.21664/2238-8869.2020v9i1.p73-86

Brandão, C. Jesus., Botelho, M. J. Coelho., Sato, M. I. Zanoli., & Lamparelli, M. C. (2011). Guia Nacional De coleta e Preservação De amostras: Água, Sedimento, Comunidades Aquáticas E Efluentes Líquidos. Companhia Ambiental Do Estado de São Paulo (CETESB), 2, 326. Accessed 14 Jul 2021.

Brito, C. B. S., Correia, K. G., Bezerra, J. L., Sousa, J. C., Andrade, S. M., Cunha, M. A., Taminato, R. L., & Oliveira, E. H. (2020). O uso de antibióticos e sua relação com as bactérias multirresistentes em hospitais. Research, Society and Development, 9(11), 1–12. https://doi.org/10.33448/rsd-v9i11.9852

Carvalho, J. J. V. de, Boaventura, F. G., Silva, A. de C. R. da, Ximenes, R. L., Rodrigues, L. K. C., Nunes, D. A. de A., & Souza, V. K. G. de. (2021). Bactérias multirresistentes e seus impactos na saúde pública: Uma responsabilidade social. Research, Society and Development, 10(6), 1–11. https://doi.org/10.33448/rsd-v10i6.16303

Chaoui, L., Mhand, R., Mellouki, F., & Rhallabi, N. (2019). Contamination of the Surfaces of a Health Care Environment by Multidrug-Resistant (MDR) Bacteria. Inter J Microbiol, 2019. https://doi.org/10.1155/2019/3236526

Chen, Z., Yu, D., He, S., Ye, H., Zhang, L., Wen, Y., Zhang, W., Shu, L., & Chen, S. (2017). Prevalence of Antibiotic-Resistant Escherichia coli in Drinking Water Sources in Hangzhou City. Front Microbiol, 0(JUN), 1133. https://doi.org/10.3389/fmicb.2017.01133

CLSI. (2019). Performance Standards for Antimicrobial Susceptibility Testing, 29th Edition. In Clinical Laboratory Standards Institute (CLSI) (pp. 1–320).

Coelho, F. R., Rubin, J. C. R., & Silva, A. M. T. C. (2021). Análise de Qualidade da Água no Alto Curso do Rio Meia Ponte Entre 2013 e 2018. Revista EVS - Revista de Ciências Ambientais e Saúde, 47(1), 1–9.

Dang, B., Mao, D., Xu, Y., & Luo, Y. (2017). Conjugative multi-resistant plasmids in Haihe River and their impacts on the abundance and spatial distribution of antibiotic resistance genes. Water Res, 111, 81–91. https://doi.org/10.1016/j.watres.2016.12.046

Ekwanzala, M. D., Abia, A. L. K., Ubomba-Jaswa, E., Keshri, J., & Momba, N. B. M. (2017). Genetic relatedness of faecal coliforms and enterococci bacteria isolated from water and sediments of the Apies River, Gauteng, South Africa. AMB Express, 7(1), 20. https://doi.org/10.1186/s13568-016-0319-4

El-Din, H. T. Nour., Yassin, A. S., Ragab, Y. M., & Hashem, A. M. (2021). Phenotype-Genotype Characterization and Antibiotic-Resistance Correlations Among Colonizing and Infectious Methicillin-Resistant Staphylococcus aureus Recovered from Intensive Care Units. Infection and Drug Resistance, 14, 1557–1571. https://doi.org/10.2147/IDR.S296000

Gogoi, A., Mazumder, P., Tyagi, V. K., Chaminda, T. G. G., An, A. K., & Kumar, M. (2018). Occurrence and fate of emerging contaminants in water environment: A review. Groundwater for Sustainable Development, 6, 169–180. https://doi.org/10.1016/J.GSD.2017.12.009

Gomes, R. Pereira., Rodrigues, A. Alves., Pincerati, M. Regina., Barbosa, M. Santiago., Braga, C. A. S. Bitencourt., Gonçalves, J. D. Vieira., & Carneiro, L. Carla. (2017). Assessment of the Bacteriological Quality of the Raw Water and the Antimicrobial Susceptibility Profile of Bacteria Isolated in Water Surface of a River. Inter J Microbiol Res, 9(9), 949–953.

Jardine, J., Mavumengwana, V., & Ubomba-Jaswa, E. (2019). Antibiotic resistance and heavy metal tolerance in cultured bacteria from hot springs as indicators of environmental intrinsic resistance and tolerance levels. Envir Pollut (Barking, Essex : 1987), 249, 696–702. https://doi.org/10.1016/j.envpol.2019.03.059

Karkman, A., Do, T. T., Walsh, F., & Virta, M. P. (2018). Antibiotic-Resistance Genes in Waste Water. Trends Microbiol, 26(3), 220–228. https://doi.org/10.1016/j.tim.2017.09.005

Kaur, R., Yadav, B., & Tyagi, R. D. (2020). Microbiology of hospital wastewater. Curr Dev Biotechnol and Bioengineering, 103–148. https://doi.org/10.1016/B978-0-12-819722-6.00004-3

Köche, J. C. (2016). Fundamentos de metodologia científica. Editora Vozes.

Maruzani, R., Pathak, A., Ward, M., Serafim, V., Munoz, L. P., Shah, A. J., & Marvasi, M. (2020). Antibiotic selective pressure in microcosms: Pollution influences the persistence of multidrug resistant Shigella flexneri 2a YSH6000 strain in polluted river water samples. Environ Technol Innov, 19. https://doi.org/10.1016/j.eti.2020.100821

Mohapatra, D. P., & Kirpalani, D. M. (2019). Advancement in treatment of wastewater: Fate of emerging contaminants. The Canadian J Chem Eng, 97(10), 2621–2631. https://doi.org/10.1002/cjce.23533

Munita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiol Spectr, 4(2), 464–472. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015

OEHHA (Office of Environmental Health Hazard Assessment). (2020). Toxicity criteria on chemicals evaluated by OEHHA.https://oehha.ca.gov/chemicals. Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book].

Olivas, C. (2013). Trends In Antibiotic Resistance And Correlations Of Antibiotic Use And Antibiotic Resistance In A Small Hospital In El Paso, Texas 2013-2015. Open Access Theses & Dissertations. University of Texas at El Paso, 1-42. Acessed 24 Jul 2021.

Onuoha, S. C. (2017). Isolation and Characterization of Multi-drug Resistant Bacterial Species from Selected Water Sources in Izzi Area, Southeastern Nigeria. World Appl Sci J, 35(1), 27–32. https://doi.org/10.5829/idosi.wasj.2017.27.32

Palacios, O. A., Contreras, C. A., Muñoz-Castellanos, L. N., González-Rangel, M. O., Rubio-Arias, H., Palacios-Espinosa, A., & Nevárez-Moorillón, G. V. (2017). Monitoring of indicator and multidrug resistant bacteria in agricultural soils under different irrigation patterns. Agric Water Manag, 184, 19–27. https://doi.org/0.1016/j.agwat.2017.01.001

Pandey, P., Soupir, ML., Wang, Y., Cao, W., Biswas, S., Vaddella, V., Atwill, R., Merwade, V., & Pasternack, G. (2018). Water and Sediment Microbial Quality of Mountain and Agricultural Streams. J Environ Qual, 47(5), 985–996. https://doi.org/10.2134/jeq2017.12.0483

Rahmani, F., Hmaied, F., Matei, I., Chirila, F., Fit, N., Yahya, M., Jebri, S., Amairia, S., & Hamdi, M. (2020). Occurrence of Staphylococcus spp. and investigation of fecal and animal viral contaminations in livestock, river water, and sewage from Tunisia and Romania. Environ Monit Assess, 192(4), 1–12. https://doi.org/10.1007/s10661-020-8172-y

Ruiz-Aguirre, A., Polo-López, M. I. ;, Fernández-Ibáñez, P., & G., Z. (2017). Integration of Membrane Distillation with solar photo-Fenton for purification of water contaminated with Bacillus sp. and Clostridium sp. spores. Sci Total Environ, 595, 110–118. https://doi.org/10.1016/j.scitotenv.2017.03.238

Semedo-Lemsaddek, T., Pedroso, N. M., Freire, D., Nunes, T., Tavares, L., Verdade, L. M., & Oliveira, M. (2018). Otter fecal enterococci as general indicators of antimicrobial resistance dissemination in aquatic environments. Ecol Indicators, 85, 1113–1120. https://doi.org/10.1016/j.ecolind.2017.11.029

Shao, S., Hu, Y., Cheng, J., & Chen, Y. (2018). Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment. Crit Rev Biotechnol, 38(8), 1195–1208. https://doi.org/10.1080/07388551.2018.1471038

Sobisch, L.-Y., Rogowski, K. M., Fuchs, J., Schmieder, W., Vaishampayan, A., Oles, P., Novikova, N., & Grohmann, E. (2019). Biofilm Forming Antibiotic Resistant Gram-Positive Pathogens Isolated From Surfaces on the International Space Station. Front Microbiol, 10, 1–16. https://doi.org/10.3389/fmicb.2019.00543

StatSoft I. (2012). STATISTICA StatSoft I. (2012). Version 7. 2004. Tulsa, USA, 150. Acess 24 Jul 2021. https://www.scirp.org/(S(351jm bntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=410046

Wang, Q., Liu, L., Hou, Z., Wang, L., Ma, D., Yang, G., Guo, S., Luo, J., Qi, L., & Luo, Y. (2020). Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms. Sci Total Environ, 717. https://doi.org/10.1016/j.scitotenv.2020.137055

WHO. (2017). Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum. World Health Organization (WHO), 1–631.

Yusuf, U., Kotwal, S. K., Gupta, S., & Ahmed, T. (2018). Identification and antibiogram pattern of Bacillus cereus from the milk and milk products in and around Jammu region. Vet World, 11(2), 186–191. https://doi.org/10.14202/vetworld.2018.186-191

Zhang, Y., Feng, R., Li, L., Zhou, X., Li, Z., Jia, R., Song, X., Zou, Y., Yin, L., He, C., Liang, X., Zhou, W., Wei, Q., Du, Y., Yan, K., Wu, Z., & Yin, Z. (2018). The Antibacterial Mechanism of Terpinen-4-ol Against Streptococcus agalactiae. Curr Microbiol, 75(9), 1214–1220. https://doi.org/10.1007/s00284-018-1512-2

Downloads

Published

10/10/2021

How to Cite

OLIVEIRA, T. R. .; GOMES , R. P. .; RODRIGUES , A. B. .; FERREIRA , L. M. .; GAMA , A. R. .; VIEIRA, J. D. G.; FERNANDES , M. R.; CARNEIRO , L. C. Identification and resistance profile of gram positive bacteria from aquatic environment. Research, Society and Development, [S. l.], v. 10, n. 13, p. e226101321182, 2021. DOI: 10.33448/rsd-v10i13.21182. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21182. Acesso em: 4 dec. 2021.

Issue

Section

Health Sciences