Identification and resistance profile of gram positive bacteria from aquatic environment
DOI:
https://doi.org/10.33448/rsd-v10i13.21182Keywords:
Correlation; Drugs; Pan drug; Resistance genes.Abstract
The Meia Ponte River – Goiás/Brazil, is responsible for benefiting about 2 million people in Goiás State. However, the increase in pollution with the disposal of sewage, chemicals and drug remains have contributed to the increase in bacterial resistance and the exchange of resistance genes. The objective of this study was to isolate, identify and analyze the resistance profile of gram-positive bacteria present in raw water and sediment of the Meia Ponte River – Goiás. The samples were collected from four sampling points and two collections were carried out, one in the dry season and the other in the rainy season. The isolated bacteria were identificated, then the antibiogram was performed. A total of 75 strains were isolated, 72.0% (54/75) of Streptococcus spp., 12.0% (9/75) of Staphylococcus spp., 9.3% (7/75) of Bacillus spp. and 6.7% (5/75) of Enterococcus spp. Furthermore, 52.0% (39/75) of the isolated strains were from raw water and 48.0% (36/75) were isolated from the sediment. Among the samples, strains of Staphylococcus spp. and Bacillus spp. showed greater resistance to antimicrobials, on the other hand, Enterococcus spp. showed less resistance. Some strains of Bacillus spp. and Streptococcus spp. presented multidrug resistant, Staphylococcus spp. showed multidrug resistant and some pan-drug resistant. In the correlation of Spearman Staphylococcus spp. and Streptococcus spp. isolated, were the ones that presented the most significant correlations (p < 0.05). Thus, the study shows the importance of ascertaining the resistance profile of this group of bacteria that aquatic environment.
References
Adesakin, T. A., Oyewale, A. T., Bayero, U., Mohammed, A. N., Aduwo, I. A., Ahmed, P. Z., Abubakar, N. D., &Barje, I. B. (2020). Assessment of bacteriological quality and physico-chemical parameters of domestic water sources in Samaru community, Zaria, Northwest Nigeria. Heliyon, 6(8), 1–13. https://doi.org/10.1016/j.heliyon.2020.e04773
Aditi, F. Y., Rahman, S. S., & Hossain, M. M. (2017). A Study on the Microbiological Status of Mineral Drinking Water. The Open Microbiol J, 11(1), 31–44. https://doi.org/10.2174/1874285801711010031
Amarasiri, M., Sano, D., & Suzuki, S. (2019). Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Crit Rev Sci Environ Technol, 50(19), 2016–2059. https://doi.org/10.1080/10643389.2019.1692611
ANVISA. (2005). Performance Standards for Testing Antimicrobial Sensitivity: 15th Information Supplement (2005). Agência Nacional de Vigilância Sanitária, Brazil (ANVISA), 25 n° 1, 1–177.
ANVISA. (2013). Manual de Microbiologia Clínica para o Controle de Infecções Relacionadas à Assistência à Saúde. Módulo 6: Detecção e identificação e bactérias de importância médica. Agência Nacional de Vigilância Sanitária, Brazil (ANVISA), 6, 1–93.
APHA. (2017). Standard Methods for the examination of water and wastewater - Twenty Third Edition. American Public Health Association (APHA), 23, 1-1546.
Asma, R., Alam, Md. J., Rahimgir, M., Asaduzzaman, M., Islam, A. M., Uddin, N., Khan, Md. S. I., Jahan, N.-W.-B., Siddika, S. S., & Datta, S. (2019). Prevalence of Multidrug-Resistant, Extensively Drug-Resistantand Pandrug-Resistant Uropathogens Isolated From UrinaryTract Infection Cases in Dhaka, Bangladesh. Avicenna J Clin Microbiol Infect, 6(2), 44–48. https://doi.org/10.34172/ajcmi.2019.09
Bailão, E. F. L. Cardoso., Zago, L. M. Sousa., Silva, N. C., Machado, K. B., D’Abadia, P. L., Oliveira, P. H. F., Nabout, J. C., & Almeida, L. M. (2020). Urban occupation increases water toxicity of an important river in central Brazil. J Soc Technol Environ Sci - Fronteiras, 9(1), 73–86. https://doi.org/10.21664/2238-8869.2020v9i1.p73-86
Brandão, C. Jesus., Botelho, M. J. Coelho., Sato, M. I. Zanoli., & Lamparelli, M. C. (2011). Guia Nacional De coleta e Preservação De amostras: Água, Sedimento, Comunidades Aquáticas E Efluentes Líquidos. Companhia Ambiental Do Estado de São Paulo (CETESB), 2, 326. Accessed 14 Jul 2021.
Brito, C. B. S., Correia, K. G., Bezerra, J. L., Sousa, J. C., Andrade, S. M., Cunha, M. A., Taminato, R. L., & Oliveira, E. H. (2020). O uso de antibióticos e sua relação com as bactérias multirresistentes em hospitais. Research, Society and Development, 9(11), 1–12. https://doi.org/10.33448/rsd-v9i11.9852
Carvalho, J. J. V. de, Boaventura, F. G., Silva, A. de C. R. da, Ximenes, R. L., Rodrigues, L. K. C., Nunes, D. A. de A., & Souza, V. K. G. de. (2021). Bactérias multirresistentes e seus impactos na saúde pública: Uma responsabilidade social. Research, Society and Development, 10(6), 1–11. https://doi.org/10.33448/rsd-v10i6.16303
Chaoui, L., Mhand, R., Mellouki, F., & Rhallabi, N. (2019). Contamination of the Surfaces of a Health Care Environment by Multidrug-Resistant (MDR) Bacteria. Inter J Microbiol, 2019. https://doi.org/10.1155/2019/3236526
Chen, Z., Yu, D., He, S., Ye, H., Zhang, L., Wen, Y., Zhang, W., Shu, L., & Chen, S. (2017). Prevalence of Antibiotic-Resistant Escherichia coli in Drinking Water Sources in Hangzhou City. Front Microbiol, 0(JUN), 1133. https://doi.org/10.3389/fmicb.2017.01133
CLSI. (2019). Performance Standards for Antimicrobial Susceptibility Testing, 29th Edition. In Clinical Laboratory Standards Institute (CLSI) (pp. 1–320).
Coelho, F. R., Rubin, J. C. R., & Silva, A. M. T. C. (2021). Análise de Qualidade da Água no Alto Curso do Rio Meia Ponte Entre 2013 e 2018. Revista EVS - Revista de Ciências Ambientais e Saúde, 47(1), 1–9.
Dang, B., Mao, D., Xu, Y., & Luo, Y. (2017). Conjugative multi-resistant plasmids in Haihe River and their impacts on the abundance and spatial distribution of antibiotic resistance genes. Water Res, 111, 81–91. https://doi.org/10.1016/j.watres.2016.12.046
Ekwanzala, M. D., Abia, A. L. K., Ubomba-Jaswa, E., Keshri, J., & Momba, N. B. M. (2017). Genetic relatedness of faecal coliforms and enterococci bacteria isolated from water and sediments of the Apies River, Gauteng, South Africa. AMB Express, 7(1), 20. https://doi.org/10.1186/s13568-016-0319-4
El-Din, H. T. Nour., Yassin, A. S., Ragab, Y. M., & Hashem, A. M. (2021). Phenotype-Genotype Characterization and Antibiotic-Resistance Correlations Among Colonizing and Infectious Methicillin-Resistant Staphylococcus aureus Recovered from Intensive Care Units. Infection and Drug Resistance, 14, 1557–1571. https://doi.org/10.2147/IDR.S296000
Gogoi, A., Mazumder, P., Tyagi, V. K., Chaminda, T. G. G., An, A. K., & Kumar, M. (2018). Occurrence and fate of emerging contaminants in water environment: A review. Groundwater for Sustainable Development, 6, 169–180. https://doi.org/10.1016/J.GSD.2017.12.009
Gomes, R. Pereira., Rodrigues, A. Alves., Pincerati, M. Regina., Barbosa, M. Santiago., Braga, C. A. S. Bitencourt., Gonçalves, J. D. Vieira., & Carneiro, L. Carla. (2017). Assessment of the Bacteriological Quality of the Raw Water and the Antimicrobial Susceptibility Profile of Bacteria Isolated in Water Surface of a River. Inter J Microbiol Res, 9(9), 949–953.
Jardine, J., Mavumengwana, V., & Ubomba-Jaswa, E. (2019). Antibiotic resistance and heavy metal tolerance in cultured bacteria from hot springs as indicators of environmental intrinsic resistance and tolerance levels. Envir Pollut (Barking, Essex : 1987), 249, 696–702. https://doi.org/10.1016/j.envpol.2019.03.059
Karkman, A., Do, T. T., Walsh, F., & Virta, M. P. (2018). Antibiotic-Resistance Genes in Waste Water. Trends Microbiol, 26(3), 220–228. https://doi.org/10.1016/j.tim.2017.09.005
Kaur, R., Yadav, B., & Tyagi, R. D. (2020). Microbiology of hospital wastewater. Curr Dev Biotechnol and Bioengineering, 103–148. https://doi.org/10.1016/B978-0-12-819722-6.00004-3
Köche, J. C. (2016). Fundamentos de metodologia científica. Editora Vozes.
Maruzani, R., Pathak, A., Ward, M., Serafim, V., Munoz, L. P., Shah, A. J., & Marvasi, M. (2020). Antibiotic selective pressure in microcosms: Pollution influences the persistence of multidrug resistant Shigella flexneri 2a YSH6000 strain in polluted river water samples. Environ Technol Innov, 19. https://doi.org/10.1016/j.eti.2020.100821
Mohapatra, D. P., & Kirpalani, D. M. (2019). Advancement in treatment of wastewater: Fate of emerging contaminants. The Canadian J Chem Eng, 97(10), 2621–2631. https://doi.org/10.1002/cjce.23533
Munita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiol Spectr, 4(2), 464–472. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
OEHHA (Office of Environmental Health Hazard Assessment). (2020). Toxicity criteria on chemicals evaluated by OEHHA.https://oehha.ca.gov/chemicals. Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book].
Olivas, C. (2013). Trends In Antibiotic Resistance And Correlations Of Antibiotic Use And Antibiotic Resistance In A Small Hospital In El Paso, Texas 2013-2015. Open Access Theses & Dissertations. University of Texas at El Paso, 1-42. Acessed 24 Jul 2021.
Onuoha, S. C. (2017). Isolation and Characterization of Multi-drug Resistant Bacterial Species from Selected Water Sources in Izzi Area, Southeastern Nigeria. World Appl Sci J, 35(1), 27–32. https://doi.org/10.5829/idosi.wasj.2017.27.32
Palacios, O. A., Contreras, C. A., Muñoz-Castellanos, L. N., González-Rangel, M. O., Rubio-Arias, H., Palacios-Espinosa, A., & Nevárez-Moorillón, G. V. (2017). Monitoring of indicator and multidrug resistant bacteria in agricultural soils under different irrigation patterns. Agric Water Manag, 184, 19–27. https://doi.org/0.1016/j.agwat.2017.01.001
Pandey, P., Soupir, ML., Wang, Y., Cao, W., Biswas, S., Vaddella, V., Atwill, R., Merwade, V., & Pasternack, G. (2018). Water and Sediment Microbial Quality of Mountain and Agricultural Streams. J Environ Qual, 47(5), 985–996. https://doi.org/10.2134/jeq2017.12.0483
Rahmani, F., Hmaied, F., Matei, I., Chirila, F., Fit, N., Yahya, M., Jebri, S., Amairia, S., & Hamdi, M. (2020). Occurrence of Staphylococcus spp. and investigation of fecal and animal viral contaminations in livestock, river water, and sewage from Tunisia and Romania. Environ Monit Assess, 192(4), 1–12. https://doi.org/10.1007/s10661-020-8172-y
Ruiz-Aguirre, A., Polo-López, M. I. ;, Fernández-Ibáñez, P., & G., Z. (2017). Integration of Membrane Distillation with solar photo-Fenton for purification of water contaminated with Bacillus sp. and Clostridium sp. spores. Sci Total Environ, 595, 110–118. https://doi.org/10.1016/j.scitotenv.2017.03.238
Semedo-Lemsaddek, T., Pedroso, N. M., Freire, D., Nunes, T., Tavares, L., Verdade, L. M., & Oliveira, M. (2018). Otter fecal enterococci as general indicators of antimicrobial resistance dissemination in aquatic environments. Ecol Indicators, 85, 1113–1120. https://doi.org/10.1016/j.ecolind.2017.11.029
Shao, S., Hu, Y., Cheng, J., & Chen, Y. (2018). Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment. Crit Rev Biotechnol, 38(8), 1195–1208. https://doi.org/10.1080/07388551.2018.1471038
Sobisch, L.-Y., Rogowski, K. M., Fuchs, J., Schmieder, W., Vaishampayan, A., Oles, P., Novikova, N., & Grohmann, E. (2019). Biofilm Forming Antibiotic Resistant Gram-Positive Pathogens Isolated From Surfaces on the International Space Station. Front Microbiol, 10, 1–16. https://doi.org/10.3389/fmicb.2019.00543
StatSoft I. (2012). STATISTICA StatSoft I. (2012). Version 7. 2004. Tulsa, USA, 150. Acess 24 Jul 2021. https://www.scirp.org/(S(351jm bntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=410046
Wang, Q., Liu, L., Hou, Z., Wang, L., Ma, D., Yang, G., Guo, S., Luo, J., Qi, L., & Luo, Y. (2020). Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms. Sci Total Environ, 717. https://doi.org/10.1016/j.scitotenv.2020.137055
WHO. (2017). Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum. World Health Organization (WHO), 1–631.
Yusuf, U., Kotwal, S. K., Gupta, S., & Ahmed, T. (2018). Identification and antibiogram pattern of Bacillus cereus from the milk and milk products in and around Jammu region. Vet World, 11(2), 186–191. https://doi.org/10.14202/vetworld.2018.186-191
Zhang, Y., Feng, R., Li, L., Zhou, X., Li, Z., Jia, R., Song, X., Zou, Y., Yin, L., He, C., Liang, X., Zhou, W., Wei, Q., Du, Y., Yan, K., Wu, Z., & Yin, Z. (2018). The Antibacterial Mechanism of Terpinen-4-ol Against Streptococcus agalactiae. Curr Microbiol, 75(9), 1214–1220. https://doi.org/10.1007/s00284-018-1512-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Thais Reis Oliveira; Raylane Pereira Gomes ; Ariadne Bernardes Rodrigues ; Leandro Martins Ferreira ; Aline Rodrigues Gama ; José Daniel Gonçalves Vieira; Marcos Rassi Fernandes ; Lilian Carla Carneiro
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.