Effect of sky cover on CO2 assimilation





CO2; Difuse Solar Radiation; Gross Primary Production; PML_V2; MODIS17A2H.


This work aimed to study the CO2 flux in the environment and its relationship with the sky coverage, in search of a mathematical relationship between these variables. It was also aimed to propose an empirical model that correlates solar radiation with CO2 fluxes (and consequently photosynthesis and plant productivity). CO2 flux data were obtained from satellites, from two bases: the base “PML_V2” and the base “MODIS17A2H”. The gross daily production of carbon was related to diffuse solar radiation. The CO2 flux data obtained from the “PML_V2” program better fit the solar radiation data from Botucatu-SP. The data from the “MODIS17A2H” program needs further studies, especially in its parameterization, which involves elements of local vegetation. In the multivariate equation obtained to estimate the gross primary production of GPP as a function of diffuse solar radiation, the Kt value per month presented high performance values, with r = 0.88, MBE = -6.99% and RMSE = 16.70%.


Alton, P. B., P. North, & S. O. Los. (2007). The impact of diffuse sunlighton canopy light-use efficiency, gross photosynthetic product and netecosystem exchange in three forest biomes, Global Change Biol., 13, 1-12.

Araújo, Thaís Maia; Higuchi, Niro; Carvalho Jr., João Andrade. (1996). Comparação de métodos para determinar biomassa na região amazônica. Anais da Academia Brasileira de Ciencias, 68, 39-40. Recuperado de http://hdl.handle.net/11449/64973.

Brodersen, C. R., T. C. Vogelmann, W. E. Williams, & H. L. Gorton. (2008). A new paradigm in leaf-level photosynthesis: Direct and diffuselight are not equal. Plant Cell Environ., 31, 159-164.

Dal Pai, A.; Escobedo, J. F. Correa, Dal Pai, E.; Santos M. C. (2014). Estimation of Hourly, Daily and Monthly mean Diffuse Radiation Based Shadowring Correction. Energy Procedia, 57, 1150-1159.

Erbs, D.G., Klein, S.A., Duffie, J.A. (1982). Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Solar Energy, 28, 293-302.

Escobedo, J. A., Gomes, E. N., Oliveira, A. P. & Soares, J. (2009). Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil. Applied Energy. Oxford: Elsevier, 86(3), 299-309. Recuperado de : http://hdl.handle.net/11449/41851.

Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. Editora Artes Médicas.

Freedman, J. M., D. R. Fitzjarrald, K. E. Moore, & R. K. Sakai. (2001). Boundary layer clouds and vegetation-atmosphere feedbacks, J. Clim., 14, 180–197.

Gan, R., Zhang, Y.Q., Shi, H., Yang, Y.T., Eamus, D., Cheng, L., Chiew, F.H.S., Yu, Q. (2018). Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems. Ecohydrology, 11(5). Recuperado de: https://doi.org/10.1002/eco.1974.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment.

Gu, L., J. D. Fuentes, H. H. Shugart, R. M. Staebler, & T. A. Black.(1999). Responses of net ecosystem exchanges of carbon dioxide tochanges in cloudiness: Results from two North American deciduous forests, J. Geophys. Res., 104(31), 421-434. 1999.

Instituto Nacional de Meteorologia – INMET - https://portal.inmet.gov.br – 2021.

Iqbal, M. An introduction to solar radiation. Nova Iorque, Academic Press, 1983. 390p.

Jacovides, C. P.; Assimakopoulos, V. D.; Tymvios, F. S. (2006). Solar global UV radiation and its relationship with solar global radiation measured on the island of Cyprus. Energy, 31, 2728-2738.

Jacovides, C. P.; Tymvios, F. S.; Assimakopoulos, V. D.; Kaltsounides, N. A. (2007). The dependence of global and diffuse PAR radiation components on sky conditions at Athens, Greece. Agricultural and Forest Meteorology, 143, 277-287.

Jing, X., Huang, J., Wang, G., Higuchi, K., Bi, J., Sun, Y., Yu, H., & Wang, T. (2010). The effects of clouds and aerosols on net ecosystem CO2 exchange over semi-arid Loess Plateau of Northwest China, Atmos. Chem. Phys., 10, 8205-8218. Recuperado de https://doi.org/10.5194/acp-10-8205-2010.

Leuning, R., Zhang, Y.Q., Rajaud, A., Cleugh, H., Tu, K. (2008). A simple surface 727 conductance model to estimate regional evaporation using MODIS leaf area index and 728 the Penman-Monteith equation. Water Resour. Res, 44. doi:10.1029/2007WR006562.

Matthew G. Letts, Peter M. Lafleur & Nigel T. Roulet, (2005). On the relationship between cloudiness and net ecosystem carbon dioxide exchange in a peatland ecosystem, Écoscience, 12:1, 53-69, DOI: 10.2980/i1195-6860-12-1-53.1.https://doi.org/10.2980/i1195-6860-12-1-53.1 2005.

Melo, J. M. D., Escobedo, J. F.(1994). Medida da radiação solar difusa. In: ENERGÍAS LÍMPIAS EN PROGRESO, VII CONGRESSO IBÉRICO DE ENERGIA SOLAR, Vigo, Espanha. Anais INTERNATIONAL SOLAR ENERGY SOCIETY, 1.

Min, Q., S. Wang. (2008). Clouds modulate terrestrial carbon uptake in amid latitude hardwood forest, Geophys. Res. Lett., 35, doi:10.1029/2007GL032398.

Oliphant, A. J., D. Dragoni, B. Deng, C.S.B. Grimmond, H.-P. Schmid, S.L. Scott. (2011). The role of sky conditions on gross primary production in a mixed deciduous forest. Agricultural and ForestMeteorology, 151(7), 781-791, ISSN 0168-1923. Recuperado de https://doi.org/10.1016/j.agrformet.2011.01.005 (http://www.sciencedirect.com/science/article/pii/S0168192311000244).

Pallardy, S. G. (2008). Chapter 9 – Nitrogen Metabolism. Physiology of Woody Plants (Third Edition), 233-254.

Ren, X., He, H., Zhang, L., & Yu, G. (2018). Global radiation, photosynthetically active radiation, and the diffuse component dataset of China, 1981–2010, Earth Syst. Sci., 10, 1217-1226. Recuperado de https://doi.org/10.5194/essd-10-1217-2018.

Roderick, M. L., G. D. Farquhar, S. L. Berry, & I. R. Noble, (2001). On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation, Oecologia, 129, 21–30.

Running, Steven W., Zhao, Maosheng, (2019). User’s guide daily GPP and annual npp (MOD17A2H/A3H) and year-end gap filled (MOD17A2HGF/A3HGF) products NASA earth observing system MODIS land algorithm (for collection 6). Version 4.2. 10/Junho/2019.

Salisbury, F.B.; Ross, C.W. (2012). Fisiologia de Plantas – Tradução da 4ª edição norte-americana. São Paulo: Cengagelearning, 774p.

Yanni G., Guirui Y., Huimin Y., Xianjin Z., Shenggong L., Qiufeng W., Junhui Z., Yanfen W., Yingnian L., Liang Z., Peili S. (2014). A MODIS-based Photosynthetic Capacity Model to estimate gross primary production in Northern China and the Tibetan Plateau. Remote Sensing of Environment. 148, 108-118. ISSN 0034-4257. Recuperado de https://doi.org/10.1016/j.rse.2014.03.006. 2014.

Yamashita, M., Yoshimura M. (2019). Estimation of Global and Diffuse Photosynthetic Photon Flux Density under Various Sky Conditions Using Ground-Based Whole-Sky Images. Remote Sens., 11(8), 932. Recuperado de https://doi.org/10.3390/rs11080932.

Taiz, L.; Zeiger, E. (2016). Fisiologia vegetal. 6. ed., Artmed, 918 p.

World Weather Organization – WWO - www.wwo.org. 2021.

Zhang X, Zhang Y, Zhoub Y. (2000). Masuring and modeling photosynthetically active radiation in Tibet Plateau during April-October. Agricultural Meteorology, 102, 207-212.

Zhang, Y., Kong, D., Gan, R., Chiew, F.H.S., Mcvicar, T.R., Zhang, Q., & Yang, Y. (2019). Coupled estimation of 500m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017. Remote Sens. Environ, 222, 165-182. Recuperado de https://doi.org/10.1016/j.rse.2018.12.031.

Zhang, Y., Peña-Arancibia, J.L., Mcvicar, T.R., Chiew, F.H.S., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y.Y., Miralles, D.G., Pan, M. (2016). Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep, 6. Recuperado de https://doi.org/10.1038/srep19124.



How to Cite

DAL PAI, E. Effect of sky cover on CO2 assimilation. Research, Society and Development, [S. l.], v. 10, n. 13, p. e342101321307, 2021. DOI: 10.33448/rsd-v10i13.21307. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21307. Acesso em: 3 dec. 2021.



Agrarian and Biological Sciences