Efecto de la cubierta del cielo sobre la asimilación de CO2
DOI:
https://doi.org/10.33448/rsd-v10i13.21307Palabras clave:
CO2; Radiación solar difusa; Producción primaria bruta; PML_V2; MODIS17A2H.Resumen
El objetivo de este trabajo fue estudiar el flujo de CO2 en el ambiente y su relación con la cobertura del cielo y la naturaleza de la radiación solar, en busca de una relación matemática entre estas variables. También se pretendía proponer un modelo empírico que correlacione la radiación solar con los flujos de CO2 (y en consecuencia la fotosíntesis y la productividad de las plantas). Los datos de flujo de CO2 se obtuvieron de satélites, a partir de dos bases: la base “PML_V2” y la base “MODIS17A2H”. La producción diaria bruta de carbono se relacionó con la radiación solar difusa. Los datos de flujo de CO2 obtenidos del programa “PML_V2” se ajustan mejor a los datos de radiación solar de Botucatu-SP. Los datos del programa “MODIS17A2H” necesitan más estudios, principalmente en su parametrización, que involucra elementos de la vegetación local. En la ecuación multivariante obtenida para estimar la producción primaria de carbono GPP en función de la radiación solar difusa, el valor de Kt por mes presentó valores de alto desempeño, con r = 0.88, MBE = -6.99% y RMSE = 16.70%.
Citas
Alton, P. B., P. North, & S. O. Los. (2007). The impact of diffuse sunlighton canopy light-use efficiency, gross photosynthetic product and netecosystem exchange in three forest biomes, Global Change Biol., 13, 1-12.
Araújo, Thaís Maia; Higuchi, Niro; Carvalho Jr., João Andrade. (1996). Comparação de métodos para determinar biomassa na região amazônica. Anais da Academia Brasileira de Ciencias, 68, 39-40. Recuperado de http://hdl.handle.net/11449/64973.
Brodersen, C. R., T. C. Vogelmann, W. E. Williams, & H. L. Gorton. (2008). A new paradigm in leaf-level photosynthesis: Direct and diffuselight are not equal. Plant Cell Environ., 31, 159-164.
Dal Pai, A.; Escobedo, J. F. Correa, Dal Pai, E.; Santos M. C. (2014). Estimation of Hourly, Daily and Monthly mean Diffuse Radiation Based Shadowring Correction. Energy Procedia, 57, 1150-1159.
Erbs, D.G., Klein, S.A., Duffie, J.A. (1982). Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Solar Energy, 28, 293-302.
Escobedo, J. A., Gomes, E. N., Oliveira, A. P. & Soares, J. (2009). Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil. Applied Energy. Oxford: Elsevier, 86(3), 299-309. Recuperado de : http://hdl.handle.net/11449/41851.
Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. Editora Artes Médicas.
Freedman, J. M., D. R. Fitzjarrald, K. E. Moore, & R. K. Sakai. (2001). Boundary layer clouds and vegetation-atmosphere feedbacks, J. Clim., 14, 180–197.
Gan, R., Zhang, Y.Q., Shi, H., Yang, Y.T., Eamus, D., Cheng, L., Chiew, F.H.S., Yu, Q. (2018). Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems. Ecohydrology, 11(5). Recuperado de: https://doi.org/10.1002/eco.1974.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment.
Gu, L., J. D. Fuentes, H. H. Shugart, R. M. Staebler, & T. A. Black.(1999). Responses of net ecosystem exchanges of carbon dioxide tochanges in cloudiness: Results from two North American deciduous forests, J. Geophys. Res., 104(31), 421-434. 1999.
Instituto Nacional de Meteorologia – INMET - https://portal.inmet.gov.br – 2021.
Iqbal, M. An introduction to solar radiation. Nova Iorque, Academic Press, 1983. 390p.
Jacovides, C. P.; Assimakopoulos, V. D.; Tymvios, F. S. (2006). Solar global UV radiation and its relationship with solar global radiation measured on the island of Cyprus. Energy, 31, 2728-2738.
Jacovides, C. P.; Tymvios, F. S.; Assimakopoulos, V. D.; Kaltsounides, N. A. (2007). The dependence of global and diffuse PAR radiation components on sky conditions at Athens, Greece. Agricultural and Forest Meteorology, 143, 277-287.
Jing, X., Huang, J., Wang, G., Higuchi, K., Bi, J., Sun, Y., Yu, H., & Wang, T. (2010). The effects of clouds and aerosols on net ecosystem CO2 exchange over semi-arid Loess Plateau of Northwest China, Atmos. Chem. Phys., 10, 8205-8218. Recuperado de https://doi.org/10.5194/acp-10-8205-2010.
Leuning, R., Zhang, Y.Q., Rajaud, A., Cleugh, H., Tu, K. (2008). A simple surface 727 conductance model to estimate regional evaporation using MODIS leaf area index and 728 the Penman-Monteith equation. Water Resour. Res, 44. doi:10.1029/2007WR006562.
Matthew G. Letts, Peter M. Lafleur & Nigel T. Roulet, (2005). On the relationship between cloudiness and net ecosystem carbon dioxide exchange in a peatland ecosystem, Écoscience, 12:1, 53-69, DOI: 10.2980/i1195-6860-12-1-53.1.https://doi.org/10.2980/i1195-6860-12-1-53.1 2005.
Melo, J. M. D., Escobedo, J. F.(1994). Medida da radiação solar difusa. In: ENERGÍAS LÍMPIAS EN PROGRESO, VII CONGRESSO IBÉRICO DE ENERGIA SOLAR, Vigo, Espanha. Anais INTERNATIONAL SOLAR ENERGY SOCIETY, 1.
Min, Q., S. Wang. (2008). Clouds modulate terrestrial carbon uptake in amid latitude hardwood forest, Geophys. Res. Lett., 35, doi:10.1029/2007GL032398.
Oliphant, A. J., D. Dragoni, B. Deng, C.S.B. Grimmond, H.-P. Schmid, S.L. Scott. (2011). The role of sky conditions on gross primary production in a mixed deciduous forest. Agricultural and ForestMeteorology, 151(7), 781-791, ISSN 0168-1923. Recuperado de https://doi.org/10.1016/j.agrformet.2011.01.005 (http://www.sciencedirect.com/science/article/pii/S0168192311000244).
Pallardy, S. G. (2008). Chapter 9 – Nitrogen Metabolism. Physiology of Woody Plants (Third Edition), 233-254.
Ren, X., He, H., Zhang, L., & Yu, G. (2018). Global radiation, photosynthetically active radiation, and the diffuse component dataset of China, 1981–2010, Earth Syst. Sci., 10, 1217-1226. Recuperado de https://doi.org/10.5194/essd-10-1217-2018.
Roderick, M. L., G. D. Farquhar, S. L. Berry, & I. R. Noble, (2001). On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation, Oecologia, 129, 21–30.
Running, Steven W., Zhao, Maosheng, (2019). User’s guide daily GPP and annual npp (MOD17A2H/A3H) and year-end gap filled (MOD17A2HGF/A3HGF) products NASA earth observing system MODIS land algorithm (for collection 6). Version 4.2. 10/Junho/2019.
Salisbury, F.B.; Ross, C.W. (2012). Fisiologia de Plantas – Tradução da 4ª edição norte-americana. São Paulo: Cengagelearning, 774p.
Yanni G., Guirui Y., Huimin Y., Xianjin Z., Shenggong L., Qiufeng W., Junhui Z., Yanfen W., Yingnian L., Liang Z., Peili S. (2014). A MODIS-based Photosynthetic Capacity Model to estimate gross primary production in Northern China and the Tibetan Plateau. Remote Sensing of Environment. 148, 108-118. ISSN 0034-4257. Recuperado de https://doi.org/10.1016/j.rse.2014.03.006. 2014.
Yamashita, M., Yoshimura M. (2019). Estimation of Global and Diffuse Photosynthetic Photon Flux Density under Various Sky Conditions Using Ground-Based Whole-Sky Images. Remote Sens., 11(8), 932. Recuperado de https://doi.org/10.3390/rs11080932.
Taiz, L.; Zeiger, E. (2016). Fisiologia vegetal. 6. ed., Artmed, 918 p.
World Weather Organization – WWO - www.wwo.org. 2021.
Zhang X, Zhang Y, Zhoub Y. (2000). Masuring and modeling photosynthetically active radiation in Tibet Plateau during April-October. Agricultural Meteorology, 102, 207-212.
Zhang, Y., Kong, D., Gan, R., Chiew, F.H.S., Mcvicar, T.R., Zhang, Q., & Yang, Y. (2019). Coupled estimation of 500m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017. Remote Sens. Environ, 222, 165-182. Recuperado de https://doi.org/10.1016/j.rse.2018.12.031.
Zhang, Y., Peña-Arancibia, J.L., Mcvicar, T.R., Chiew, F.H.S., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y.Y., Miralles, D.G., Pan, M. (2016). Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep, 6. Recuperado de https://doi.org/10.1038/srep19124.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Enzo Dal Pai
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.