Scientifically validated applications for monitoring the practice of physical activities and energy expenditure using the smartphone accelerometer: a integrative review
DOI:
https://doi.org/10.33448/rsd-v10i13.21399Keywords:
Apps; Smartphone; Energy Expenditure; Accelerometers; Physical activity.Abstract
Introduction: Mobile technologies, especially smartphone applications, have contributed a lot in the area of health and physical activity, but there is an increasing concern with the validation criteria of these tools. It is extremely important to know if the physiological parameters used are safe and reliable to promote and monitor the practice of physical activity. With technological innovation, it is possible to process the data of accelerometer to measure energy expenditure. Objective: this study searched for evidence of scientific validation in Apps that uses smartphone’s accelerometer as energy expenditure indicator. Method: The keywords, inclusion and exclusion criteria were defined. The selected articles were categorized using an adapted questionnaire. Result: In a total of 1923 articles, eight articles meted all inclusion criteria that developed and validated apps for physical activity analysis. Conclusion: The results induced the effectiveness of smartphone's accelerometer to recognize physical activity and energy expenditure. It can be used to encourage healthy and safe practices, leading to improvements in quality of life. The limited number of articles with scientifically validated Applications indicates the need for more research.
References
Aladwani, A., & Palvia, P. (2002). Developing and Validating an Instrument for Measuring User-Perceived Web Quality. Information & Management, 39, 467–476. https://doi.org/10.1016/S0378-7206(01)00113-6
Appelboom, G., Camacho, E., Abraham, M. E., Bruce, S. S., Dumont, E. L., Zacharia, B. E., D’Amico, R., Slomian, J., Reginster, J. Y., Bruyère, O., & Connolly, E. S. (2014). Smart wearable body sensors for patient self-assessment and monitoring. Arch Public Health, 72(1), 28. https://doi.org/10.1186/2049-3258-72-28
Bayat, A., Pomplun, M., & Tran, D. A. (2014). A Study on Human Activity Recognition Using Accelerometer Data from Smartphones. Procedia Computer Science, 34, 450–457. https://doi.org/10.1016/j.procs.2014.07.009
Bouten, C. V. C., Koekkoek, K. T. M., Verduin, M., Kodde, R., & Janssen, J. D. (1997). A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Transactions on Biomedical Engineering, 44(3), 136–147. https://doi.org/10.1109/10.554760
Chen, K. Y., & Sun, M. (1997). Improving energy expenditure estimation by using a triaxial accelerometer. Journal of Applied Physiology, 83(6), 2112–2122. https://doi.org/10.1152/jappl.1997.83.6.2112
Cisco Annual Internet Report—Cisco Annual Internet Report (2018–2023) White Paper. ([s.d.]). Cisco Annual Internet Report (2018–2023) White Paper. e https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
Costa, J., Fazendeiro, P., & Ferreira, F. (2016). A mobile application to improve the quality of life via exercise. 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP), 55–62. https://doi.org/10.1109/ICCP.2016.7737122
Dunton, G., Dzubur, E., Kawabata, K., Yanez, B., Bo, B., & Intille, S. (2014). Development of a Smartphone Application to Measure Physical Activity Using Sensor-Assisted Self-Report. Frontiers in Public Health, 2, 12. https://doi.org/10.3389/fpubh.2014.00012
Easton, C., Philip, N., Aleksandravicius, A., Pawlak, J., Muggeridge, D. J., Domene, P. A., & Istepanian, R. S. H. (2014). Validity of Smartphone Accelerometers for Assessing Energy Expenditure during Fast Running. In L. M. Roa Romero (Org.), XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (p. 1911–1914). Springer International Publishing. https://doi.org/10.1007/978-3-319-00846-2_471
Faria, G. S., Polese, J. C., Ribeiro-Samora, G. A., Scianni, A. A., Faria, C. D. C. M., & Teixeira-Salmela, L. F. (2019). Validity of the accelerometer and smartphone application in estimating energy expenditure in individuals with chronic stroke. Brazilian Journal of Physical Therapy, 23(3), 236–243. https://doi.org/10.1016/j.bjpt.2018.08.003
Fournier, V., Bretonnière, S., & Spranzi, M. (2020). Empirical research in clinical ethics: The ‘committed researcher’ approach. Bioethics, 34(7), 719–726. https://doi.org/10.1111/bioe.12742
Girardello, A., & Michahelles, F. (2010). AppAware: Which mobile applications are hot? Proceedings of the 12th international conference on Human computer interaction with mobile devices and services, 431–434. https://doi.org/10.1145/1851600.1851698
Goulart, L. J., Boni, G. N., Morgado, E. M., Tokunaga, M. K., & Bornia, B. (2006). Saúde e Tecnologia da Informação: Convergência e Mobilidade (No 10). 1, 537–541.
Guidoux, R., Duclos, M., Fleury, G., Lacomme, P., Lamaudière, N., Saboul, D., Ren, L., & Rousset, S. (2017). The eMouveRecherche application competes with research devices to evaluate energy expenditure, physical activity and still time in free-living conditions. J Biomed Inform, 69, 128–134. https://doi.org/10.1016/j.jbi.2017.04.005
Guillén, S., Sanna, A., Ngo, J., Meneu, T., Del Hoyo, E., & Demeester, M. (2009). New technologies for promoting a healthy diet and active living. Nutrition Reviews, 67(suppl_1), S107–S110. https://doi.org/10.1111/j.1753-4887.2009.00171.x
Hills, A. P., Mokhtar, N., & Byrne, N. M. (2014). Assessment of Physical Activity and Energy Expenditure: An Overview of Objective Measures. Frontiers in Nutrition, 1, 5. https://doi.org/10.3389/fnut.2014.00005
Junior, J. V. M., D’Castro, R. J., Rodrigues, F. M. M., Gusmão, C. M. G. de, Lyra, N. R. S., & Sarinho, S. W. (2011). InteliMed: Uma experiência de desenvolvimento de sistema móvel de suporte ao diagnóstico médico. Revista Brasileira de Computação Aplicada, 3(1), 30–42. https://doi.org/10.5335/rbca.2013.1316
Kooiman, T. J. M., Dontje, M. L., Sprenger, S. R., Krijnen, W. P., van der Schans, C. P., & de Groot, M. (2015). Reliability and validity of ten consumer activity trackers. BMC Sports Science, Medicine and Rehabilitation, 7(1), 24. https://doi.org/10.1186/s13102-015-0018-5
Kuehnhausen, M., & Frost, V. S. (2013). Trusting smartphone Apps? To install or not to install, that is the question. 2013 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 30–37. https://doi.org/10.1109/CogSIMA.2013.6523820
Kwapisz, J. R., Weiss, G. M., & Moore, S. A. (2011). Activity recognition using cell phone accelerometers. ACM SIGKDD Explorations Newsletter, 12(2), 74–82. https://doi.org/10.1145/1964897.1964918
Lee, J.-M., Kim, Y., & Welk, G. J. (2014). Validity of Consumer-Based Physical Activity Monitors. Medicine & Science in Sports & Exercise, 46(9), 1840–1848. https://doi.org/10.1249/MSS.0000000000000287
Maddison, R., Gemming, L., Monedero, J., Bolger, L., Belton, S., Issartel, J., Marsh, S., Direito, A., Solenhill, M., Zhao, J., Exeter, D. J., Vathsangam, H., & Rawstorn, J. C. (2017). Quantifying Human Movement Using the Movn Smartphone App: Validation and Field Study. JMIR MHealth and UHealth, 5(8), e7167. https://doi.org/10.2196/mhealth.7167
Olsina, L., & Rossi, G. (2002). Measuring Web application quality with WebQEM. Multimedia, IEEE, 9, 20–29. https://doi.org/10.1109/M MUL.2002.1041945
Organization, W. H. (2009). Global health risks: Mortality and burden of disease attributable to selected major risks (p. vi, 62 p.). World Health Organization.
Pande, A., Zhu, J., Das, A. K., Zeng, Y., Mohapatra, P., & Han, J. J. (2015). Using Smartphone Sensors for Improving Energy Expenditure Estimation. IEEE J. Transl. Eng. Health Med., 3, 1–12. https://doi.org/10.1109/JTEHM.2015.2480082
Pires, I. M., Marques, G., Garcia, N. M., Flórez-revuelta, F., Ponciano, V., & Oniani, S. (2020). A research on the classification and applicability of the mobile health applications. Journal of Personalized Medicine, 10(1). https://doi.org/10.3390/jpm10010011
Rodriguez, V. H., Medrano, C., Plaza, I., Corella, C., Abarca, A., & Julian, J. A. (2019). Comparison of Several Algorithms to Estimate Activity Counts with Smartphones as an Indication of Physical Activity Level. IRBM, 40(2), 95–102. https://doi.org/10.1016/j.irbm.2018.12.001
Seethamraju, R. T. (2004). Measurement of user-perceived web quality. In T. Leino, T. Saarinen, & S. Klein (Orgs.), Proceedings of the 13th European Conference on Information Systems, The European IS Profession in the Global Networking Environment, ECIS 2004, Turku, Finland, June 14-16, 2004 (p. 1745–1757). http://aisel.aisnet.org/ecis2004/176
Shoaib, M., Bosch, S., Incel, O. D., Scholten, H., & Havinga, P. J. M. (2014). Fusion of Smartphone Motion Sensors for Physical Activity Recognition. Sensors, 14(6), 10146–10176. https://doi.org/10.3390/s140610146
Sirard, J. R., Kubik, M. Y., Fulkerson, J. A., & Arcan, C. (2008). Objectively Measured Physical Activity in Urban Alternative High School Students. Med Sci Sports Exerc, 40(12), 2088–2095. https://doi.org/10.1249/MSS.0b013e318182092b
Van Coevering, P., Harnack, L., Schmitz, K., Fulton, J. E., Galuska, D. A., & Gao, S. (2005). Feasibility of Using Accelerometers to Measure Physical Activity in Young Adolescents. Medicine & Science in Sports & Exercise, 37(5), 867–871. https://doi.org/10.1249/01.MSS.0000162694.66799.FE
Warburton, D. E. R., Nicol, C. W., & Bredin, S. S. D. (2006). Health benefits of physical activity: The evidence. CMAJ, 174(6), 801–809. https://doi.org/10.1503/cmaj.051351
Wiehe, S. E., Carroll, A. E., Liu, G. C., Haberkorn, K. L., Hoch, S. C., Wilson, J. S., & Fortenberry, Jd. (2008). Using GPS-enabled cell phones to track the travel patterns of adolescents. International Journal of Health Geographics, 7(1), 22. https://doi.org/10.1186/1476-072X-7-22
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Nicoli Bertti Zanin; William Tsutomu Watanabe; Wilson Rogério Rescigno; Márcio Tadashi Ishizaki; Robson Rodrigues da Silva; Daniel Gustavo Goroso
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.