Aplicaciones científicamente válidadas para monitorear la práctica de actividades físicas y el gasto energético utilizando el acelerómetro del teléfono inteligente: una revisión integrativa

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i13.21399

Palabras clave:

Apps; Smartphone; Gasto Energético; Acelerómetros; Actividad física.

Resumen

Introducción: Las tecnologías móviles, especialmente las aplicaciones para teléfonos inteligentes han contribuido mucho en el área de la salud y la actividad física, pero existe una preocupación creciente por los criterios de validación de estas herramientas. Es de suma importancia saber si los parámetros fisiológicos utilizados son seguros y fiables para promover y controlar la práctica de la actividad física. Con la innovación tecnológica, es posible procesar los datos del acelerómetro para medir el gasto energético. Objetivo: Este estudio buscó evidencia de validación científica en aplicaciones que utilizan el acelerómetro de los teléfonos inteligentes como indicador de gasto de energía. Método: Se definieron las palabras clave, los criterios de inclusión y exclusión. Los artículos seleccionados se categorizaron mediante un cuestionario adaptado. Resultado: En un total de 1923 artículos, ocho artículos cumplieron con todos los criterios de inclusión que desarrollaron y validaron aplicaciones para el análisis de la actividad física. Conclusión: Los resultados indujeron la efectividad del acelerómetro de los teléfonos inteligentes para reconocer la actividad física y el gasto de energía. Se puede utilizar para fomentar prácticas saludables y seguras que conduzcan a mejoras en la calidad de vida. El número limitado de artículos con aplicaciones validadas científicamente indica la necesidad de realizar más investigaciones.

Citas

Aladwani, A., & Palvia, P. (2002). Developing and Validating an Instrument for Measuring User-Perceived Web Quality. Information & Management, 39, 467–476. https://doi.org/10.1016/S0378-7206(01)00113-6

Appelboom, G., Camacho, E., Abraham, M. E., Bruce, S. S., Dumont, E. L., Zacharia, B. E., D’Amico, R., Slomian, J., Reginster, J. Y., Bruyère, O., & Connolly, E. S. (2014). Smart wearable body sensors for patient self-assessment and monitoring. Arch Public Health, 72(1), 28. https://doi.org/10.1186/2049-3258-72-28

Bayat, A., Pomplun, M., & Tran, D. A. (2014). A Study on Human Activity Recognition Using Accelerometer Data from Smartphones. Procedia Computer Science, 34, 450–457. https://doi.org/10.1016/j.procs.2014.07.009

Bouten, C. V. C., Koekkoek, K. T. M., Verduin, M., Kodde, R., & Janssen, J. D. (1997). A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Transactions on Biomedical Engineering, 44(3), 136–147. https://doi.org/10.1109/10.554760

Chen, K. Y., & Sun, M. (1997). Improving energy expenditure estimation by using a triaxial accelerometer. Journal of Applied Physiology, 83(6), 2112–2122. https://doi.org/10.1152/jappl.1997.83.6.2112

Cisco Annual Internet Report—Cisco Annual Internet Report (2018–2023) White Paper. ([s.d.]). Cisco Annual Internet Report (2018–2023) White Paper. e https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

Costa, J., Fazendeiro, P., & Ferreira, F. (2016). A mobile application to improve the quality of life via exercise. 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP), 55–62. https://doi.org/10.1109/ICCP.2016.7737122

Dunton, G., Dzubur, E., Kawabata, K., Yanez, B., Bo, B., & Intille, S. (2014). Development of a Smartphone Application to Measure Physical Activity Using Sensor-Assisted Self-Report. Frontiers in Public Health, 2, 12. https://doi.org/10.3389/fpubh.2014.00012

Easton, C., Philip, N., Aleksandravicius, A., Pawlak, J., Muggeridge, D. J., Domene, P. A., & Istepanian, R. S. H. (2014). Validity of Smartphone Accelerometers for Assessing Energy Expenditure during Fast Running. In L. M. Roa Romero (Org.), XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (p. 1911–1914). Springer International Publishing. https://doi.org/10.1007/978-3-319-00846-2_471

Faria, G. S., Polese, J. C., Ribeiro-Samora, G. A., Scianni, A. A., Faria, C. D. C. M., & Teixeira-Salmela, L. F. (2019). Validity of the accelerometer and smartphone application in estimating energy expenditure in individuals with chronic stroke. Brazilian Journal of Physical Therapy, 23(3), 236–243. https://doi.org/10.1016/j.bjpt.2018.08.003

Fournier, V., Bretonnière, S., & Spranzi, M. (2020). Empirical research in clinical ethics: The ‘committed researcher’ approach. Bioethics, 34(7), 719–726. https://doi.org/10.1111/bioe.12742

Girardello, A., & Michahelles, F. (2010). AppAware: Which mobile applications are hot? Proceedings of the 12th international conference on Human computer interaction with mobile devices and services, 431–434. https://doi.org/10.1145/1851600.1851698

Goulart, L. J., Boni, G. N., Morgado, E. M., Tokunaga, M. K., & Bornia, B. (2006). Saúde e Tecnologia da Informação: Convergência e Mobilidade (No 10). 1, 537–541.

Guidoux, R., Duclos, M., Fleury, G., Lacomme, P., Lamaudière, N., Saboul, D., Ren, L., & Rousset, S. (2017). The eMouveRecherche application competes with research devices to evaluate energy expenditure, physical activity and still time in free-living conditions. J Biomed Inform, 69, 128–134. https://doi.org/10.1016/j.jbi.2017.04.005

Guillén, S., Sanna, A., Ngo, J., Meneu, T., Del Hoyo, E., & Demeester, M. (2009). New technologies for promoting a healthy diet and active living. Nutrition Reviews, 67(suppl_1), S107–S110. https://doi.org/10.1111/j.1753-4887.2009.00171.x

Hills, A. P., Mokhtar, N., & Byrne, N. M. (2014). Assessment of Physical Activity and Energy Expenditure: An Overview of Objective Measures. Frontiers in Nutrition, 1, 5. https://doi.org/10.3389/fnut.2014.00005

Junior, J. V. M., D’Castro, R. J., Rodrigues, F. M. M., Gusmão, C. M. G. de, Lyra, N. R. S., & Sarinho, S. W. (2011). InteliMed: Uma experiência de desenvolvimento de sistema móvel de suporte ao diagnóstico médico. Revista Brasileira de Computação Aplicada, 3(1), 30–42. https://doi.org/10.5335/rbca.2013.1316

Kooiman, T. J. M., Dontje, M. L., Sprenger, S. R., Krijnen, W. P., van der Schans, C. P., & de Groot, M. (2015). Reliability and validity of ten consumer activity trackers. BMC Sports Science, Medicine and Rehabilitation, 7(1), 24. https://doi.org/10.1186/s13102-015-0018-5

Kuehnhausen, M., & Frost, V. S. (2013). Trusting smartphone Apps? To install or not to install, that is the question. 2013 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 30–37. https://doi.org/10.1109/CogSIMA.2013.6523820

Kwapisz, J. R., Weiss, G. M., & Moore, S. A. (2011). Activity recognition using cell phone accelerometers. ACM SIGKDD Explorations Newsletter, 12(2), 74–82. https://doi.org/10.1145/1964897.1964918

Lee, J.-M., Kim, Y., & Welk, G. J. (2014). Validity of Consumer-Based Physical Activity Monitors. Medicine & Science in Sports & Exercise, 46(9), 1840–1848. https://doi.org/10.1249/MSS.0000000000000287

Maddison, R., Gemming, L., Monedero, J., Bolger, L., Belton, S., Issartel, J., Marsh, S., Direito, A., Solenhill, M., Zhao, J., Exeter, D. J., Vathsangam, H., & Rawstorn, J. C. (2017). Quantifying Human Movement Using the Movn Smartphone App: Validation and Field Study. JMIR MHealth and UHealth, 5(8), e7167. https://doi.org/10.2196/mhealth.7167

Olsina, L., & Rossi, G. (2002). Measuring Web application quality with WebQEM. Multimedia, IEEE, 9, 20–29. https://doi.org/10.1109/M MUL.2002.1041945

Organization, W. H. (2009). Global health risks: Mortality and burden of disease attributable to selected major risks (p. vi, 62 p.). World Health Organization.

Pande, A., Zhu, J., Das, A. K., Zeng, Y., Mohapatra, P., & Han, J. J. (2015). Using Smartphone Sensors for Improving Energy Expenditure Estimation. IEEE J. Transl. Eng. Health Med., 3, 1–12. https://doi.org/10.1109/JTEHM.2015.2480082

Pires, I. M., Marques, G., Garcia, N. M., Flórez-revuelta, F., Ponciano, V., & Oniani, S. (2020). A research on the classification and applicability of the mobile health applications. Journal of Personalized Medicine, 10(1). https://doi.org/10.3390/jpm10010011

Rodriguez, V. H., Medrano, C., Plaza, I., Corella, C., Abarca, A., & Julian, J. A. (2019). Comparison of Several Algorithms to Estimate Activity Counts with Smartphones as an Indication of Physical Activity Level. IRBM, 40(2), 95–102. https://doi.org/10.1016/j.irbm.2018.12.001

Seethamraju, R. T. (2004). Measurement of user-perceived web quality. In T. Leino, T. Saarinen, & S. Klein (Orgs.), Proceedings of the 13th European Conference on Information Systems, The European IS Profession in the Global Networking Environment, ECIS 2004, Turku, Finland, June 14-16, 2004 (p. 1745–1757). http://aisel.aisnet.org/ecis2004/176

Shoaib, M., Bosch, S., Incel, O. D., Scholten, H., & Havinga, P. J. M. (2014). Fusion of Smartphone Motion Sensors for Physical Activity Recognition. Sensors, 14(6), 10146–10176. https://doi.org/10.3390/s140610146

Sirard, J. R., Kubik, M. Y., Fulkerson, J. A., & Arcan, C. (2008). Objectively Measured Physical Activity in Urban Alternative High School Students. Med Sci Sports Exerc, 40(12), 2088–2095. https://doi.org/10.1249/MSS.0b013e318182092b

Van Coevering, P., Harnack, L., Schmitz, K., Fulton, J. E., Galuska, D. A., & Gao, S. (2005). Feasibility of Using Accelerometers to Measure Physical Activity in Young Adolescents. Medicine & Science in Sports & Exercise, 37(5), 867–871. https://doi.org/10.1249/01.MSS.0000162694.66799.FE

Warburton, D. E. R., Nicol, C. W., & Bredin, S. S. D. (2006). Health benefits of physical activity: The evidence. CMAJ, 174(6), 801–809. https://doi.org/10.1503/cmaj.051351

Wiehe, S. E., Carroll, A. E., Liu, G. C., Haberkorn, K. L., Hoch, S. C., Wilson, J. S., & Fortenberry, Jd. (2008). Using GPS-enabled cell phones to track the travel patterns of adolescents. International Journal of Health Geographics, 7(1), 22. https://doi.org/10.1186/1476-072X-7-22

Descargas

Publicado

20/10/2021

Cómo citar

ZANIN, N. B. .; WATANABE, W. T.; RESCIGNO, W. R.; ISHIZAKI, M. T.; SILVA, R. R. da .; GOROSO, D. G. . Aplicaciones científicamente válidadas para monitorear la práctica de actividades físicas y el gasto energético utilizando el acelerómetro del teléfono inteligente: una revisión integrativa. Research, Society and Development, [S. l.], v. 10, n. 13, p. e511101321399, 2021. DOI: 10.33448/rsd-v10i13.21399. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21399. Acesso em: 22 dic. 2024.

Número

Sección

Ciencias de la salud