Effect of nutritional and physical parameters on cell growth and pigment production of Serratia marcescens isolated from a legume nodule from Amazonia





Soil bacteria; Biopigments; Microbial metabolism.


The bacterium Serratia marcescens is one of the species that produces prodigiosin, a red pigment with characteristics of interest in the pharmaceutical, food and textile areas. The aim of this study was to evaluate the effect of different nutritional parameters, and identify those that positively influence cell growth and pigment production in a species of Serratia marcescens isolated from a legume nodule. Initially, the tests were carried out in submerged fermentation using Luria Bertani broth (LB), being modified for the evaluation of different sources of carbon, nitrogen, temperatures and pHs. Sample readings were taken between 24 and 72 hours, measuring cell growth by optical density (OD) at 600 nm in a 96-well microplate and pigment production was performed by extracting the metabolite with the aid of methanol and subsequent reading in a spectrophotometer at 470 nm. As a result, the highest biomass production was obtained using sucrose and glucose as carbon sources, NH4Cl as nitrogen source, at a temperature of 25 °C and pH varying between 6.0 and 7.0. The highest pigment production occurred when soluble starch was used as a carbon source and NH4Cl as a nitrogen source, at a temperature of 25 °C and pH 8.0. We conclude that from the results obtained by evaluating the different nutritional parameters, it was observed that carbon sources such as sucrose and glucose stimulate the cell growth of Serratia marcescens but significantly inhibit the production of pigments, as well as the variation in pH levels.

Author Biographies

José Carlos Ipuchima da Silva, Universidade do Estado do Amazonas

Bachelor's Degree in Biomedicine from Centro Universitário do Norte (2018), Degree in Biological Sciences from Centro Universitário Leonardo da Vinci (2020), Specialist in Clinical Analysis and Microbiology from Faculdade do Vale Elvira Dayrel (2020) and Master in Biotechnology from Graduate Program in Biotechnology and Natural Resources of the Amazon by the University of the State of Amazonas (PPGMBT-UEA).

Ana Carolina Monroy Humphrey, Universidade do Estado do Amazonas

Graduated in Biochemistry and Microbiology - Universidad del Valle de Guatemala (2012) and Master in Biotechnology and Natural Resources of the Amazon by the University of the State of Amazonas (2016). He has experience in the field of Food Science and Technology, with an emphasis on microbiological and physicochemical analysis of foods and good manufacturing practices.

Suziane Pinto Rodrigues, Universidade do Estado do Amazonas

Graduated in Biomedicine from the Uninorte Laureate International Universities School of Health Sciences (2018). She has a PAIC Scientific Initiation at Alfredo da Matta Foundation, working in research involving topics such as Genetics, Polymorphisms and Molecular Biology of microorganisms (2018). Currently, she has a master's degree in progress at the Multi-Institutional Program in Biotechnology at the Federal University of Amazonas.

Janaina Maria Rodrigues dos Santos, Instituto Nacional de Pesquisa da Amazônia

Bachelor in Chemical Engineering from CEULM/ULBRA (2011), Master in Chemical Engineering - Process and Product from the Faculty of Engineering of the University of Porto (FEUP, 2013) and PhD in Environmental Agrobiology from the Universidad Pública de Navarra (UPNA, 2018). She has experience in Research and Development, quality and the environment, having already worked with biofuels, essential oils and fertilizers.

Luiz Antonio de Oliveira, Instituto Nacional de Pesquisa da Amazônia

Degree in Agricultural Sciences from UNESP Júlio de Mesquita Filho (1976), Masters in Soil Sciences from the Federal University of Rio Grande do Sul (1982) and Doctorate in Soil Science (microbiology) from the University of Minnesota (1988). Senior Researcher at the National Institute for Research in the Amazon since January 1977.


Becton & Dickison. (2010). Padrão de turvação preparado BBL: McFarland Turbidity Standard No. 0.5. USA.

Bhat, S. V., Khan, S. S., & Amin, T. (2013). Isolation and characterization of pigment producing bacteria from various foods for their possible use as biocolours. International Journal of recent scientific research, 4(10), 1605-1609. Obtido de http://www.recentscientific.com/sites/default/files/ Download_648.pdf

Borneman, J., & Triplett, E. W. (1997). Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Applied and environmental microbiology, 63(7), 2647–2653. https://doi.org/10.1128/aem.63.7.2647-2653.1997

Carbonell, G. V., Della Colleta, H. H., Yano, T., Darini, A. L., Levy, C. E., & Fonseca, B. A. (2000). Clinical relevance and virulence factors of pigmented Serratia marcescens. FEMS immunology and medical microbiology, 28(2), 143–149. https://doi.org/10.1111/j.1574-695X.2000.tb01469.x

Chi-Zong, Z., Chiung-Wen, Y., Wei-Feng, C., Chia-Chi, L., Shu-Chen, K., Chwen-Jen, S. & Yung-Chuan, L. (2014). Identification and enhanced production of prodigiosin isoform pigment from Serratia marcescens N10612. Journal of the Taiwan Institute of chemical engineers, 45(4), 1133-1139. https://doi.org/10.1016/j.jtice.2013.12.016

Clinical and Laboratory Standards Institute – CLSI. (2015). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: M07-A10. Wayne, Pennsylvania.

Constante, P. B. L., Silva, A. G., Borges, A. S., Melo, F. O., Fanchiotti, F. E.., Silva, F. L. A. T. & Stringheta, P.C. (2021) Microencapsulação do urucum e avaliação da estabilidade. Research, Society and Development, 10(9), e51910918179. 10.33448 / rsd-v10i9.18179.

Elkenawy, N. M., Yassin, A. S., Elhifnawy, H. N. & Amin, M. A. (2017). Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation. Biotechnology Reports, 14(3), 47–53. https://doi.org/10.1016/j.btre.2017.04.001

Filho, R. F. C. & Teixeira, M. F. S. (2013). Avaliação do potencial biotecnológico de pigmentos produzidos por bactérias do gênero Serratia isoladas de substratos amazônicos. Duque de Caxias, Brasil: Espaço Científico Livre.

Giri, A. V., Anandkumar, N., Muthukumaran, G., & Pennathur, G. (2004). A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC microbiology, 4(11). https://doi.org/10.1186/1471-2180-4-11

Guimarães, O. L. (2011). Metabolismo do amido em ruminantes (Seminário aplicado- Escola de Veterinária, Universidade Federal de Goiás, Goiânia). https://files.cercomp.ufg.br/weby/up/67/o/semi2011_Leonardo_Guimaraes_1c.pdf

Gulani, C., Bhattacharya, S., & Das, A. (2012). Avaliação de parâmetros de processo que influenciam a produção aumentada de prodigiosina de Serratia marcescens e avaliação de seus potenciais antimicrobianos, antioxidantes e de tingimento. Malaysian Journal of Microbiology, 8(2), 116-122. https://doi.org/10.21161 / mjm.03612.

Hejazi, A., & Falkiner, F. R. (1997). Serratia marcescens. Journal of medical microbiology, 46(11), 903–912. https://doi.org/10.1099/00222615-46-11-903

Kim, C. H., Kim, S. W., & Hong, S. I. (1999). An integrated fermentation-separation process for the production of red pigment by Serratia sp. KH-95. Process Biochemistry, 35(5), 485-490. https://doi.org/10.1016/S0032-9592(99)00091-6

Kurbanoglu, E. B., Ozdal, M., Ozdal, O. G., & Algur, O. F. (2015). Enhanced production of prodigiosin by Serratia marcescens MO-1 using ram horn peptone. Brazilian journal of microbiology, 46(2), 631–637. https://doi.org/10.1590/S1517-838246246220131143

Lins, J. C. L. (2010). Produção e caracterização de prodigiosina isolada de Serratia marcescens UCP 1549 (Dissertação programa de Pós-graduação em ciências biológicas, Universidade Federal de Pernambuco). https://repositorio.ufpe.br/bitstream/123456789/1725/1/arquivo2808_1.pdf

Lu, Y.G., Wang, L., Xue, Y., Zhang, C., Xing, X., Lou, K., Zhang, Z., Li, Y., Zhang, G., Bi, J., & Su, Z. (2009). Production of violet pigment by a newly isolated psychrotrophic bacterium from a glacier in Xinjiang, China. Biochemical Engineering Journal, 43(2), 135-141. https://doi.org/ 10.1016/j.bej.2008.09.009

Nigam, P. S. N. & Pandey, A. (2009). Microbial Pigments: Biotechnology for Agro-industrial residues utilization. Springer.

Palacio-Castañeda, V., Pérez-Hoyos, A., Carrascal-Correa, D. & Osorioecheverri, V. M. (2019). Antibacterial pigment production by Serratia marcescens using different casein types obtained from milk. Revista Colombiana de Biotecnología, 21(1), 82–90. https://doi.org/10.15446/rev.colomb. biote.v21n1.62435%20.

Ryazantseva, I. N., Saakov, V. S., Andreyeva, I. N., Ogorodnikova, T. I., & Zuev, Y. F. (2012). Response of pigmented Serratia marcescens to the illumination. Journal of photochemistry and photobiology. B, Biology, 106, 18–23. https://doi.org/10.1016/j.jphotobiol.2011.08.006

Silva, T. T., Silva, J. R., Queiroz, A. E. S. F. & Ribeiro, D. S. (2021). Estudo comparativo entre espécies de Monascus para a produção de pigmentos naturais utilizando resíduos agroindustriais como substrato. Research, Society and Development, 10(11), e315101119558. 10.33448 / rsd-v10i11.19558.

Singh, V., Mohammad, G., Tek, A. & Bhalla, C. (2017). Optimization of physicochemical parameters influencing the production of prodigiosin from Serratia nematodiphila RL2 and exploring its antibacterial activity. 3 Biotech, 7(5), 338-346. 10.1007 / s13205-017-0979-z

Solé, M., Rius, N., Francia, A., & Lorén, J. G. (1994). The effect of pH on prodigiosin production by non-proliferating cells of Serratia marcescens. Letters in applied microbiology, 19(5), 341–344. https://doi.org/10.1111/j.1472-765x.1994.tb00470.x

Sundaramoorthy, N., Yogesh, P. & Dhandapani R. (2009). Production of prodigiosin from Serratia marcescens isolated from soil. Indian journal of science and technology, 2(10), 32-34. 10.17485 / ijst / 2009 / v2i10.5

Vendruscolo, F., Schmidell, W., de Oliveira, D., & Ninow, J. L. (2017). Kinetic of orange pigment production from Monascus ruber on submerged

fermentation. Bioprocess and Biosystems Engineering, 40(1), 115-121. 10.1007/s00449-016-1679-5

Venil, C. K., Zakaria, Z. A. & Ahmad, W. A. (2013). Bacterial pigments and their applications. Process biochemistry 48(7), 1065-1079. https://doi.org/10.1016/j.procbio.2013.06.006

Venil, C. K., Zakaria, Z. A., Usha, R. & Ahmad, W. A. (2014). Isolation and characterization of flexirubin type pigment from Chryseobacterium sp. UTM-3T. Biocatalysis and Agricultural Biotechnology, 3(4), 103-107. https://doi.org/10.1016/j.bcab.2014.02.006

Wei, Y. H., & Chen, W. C. (2005). Enhanced production of prodigiosin-like pigment from Serratia marcescens SMdeltaR by medium improvement and oil-supplementation strategies. Journal of bioscience and bioengineering, 99(6), 616–622. https://doi.org/10.1263/jbb.99.616

Zarei, O., Dastmalchi, S., & Hamzeh-Mivehroud, M. (2016). A Simple and Rapid Protocol for Producing Yeast Extract from Saccharomyces cerevisiae Suitable for Preparing Bacterial Culture Media. Iranian journal of pharmaceutical research: IJPR, 15(4), 907–913. https://pubmed.ncbi.nlm.nih.gov/28243289/

Zhang, J., Reddy, J., Buckland, B., & Greasham, R. (2003). Toward consistent and productive complex media for industrial fermentations: studies on yeast extract for a recombinant yeast fermentation process. Biotechnology and bioengineering, 82(6), 640–652. https://doi.org/10.1002/bit.10608



How to Cite

SILVA, J. C. I. da; HUMPHREY, A. C. M. .; RODRIGUES, S. P.; SANTOS, J. M. R. dos .; OLIVEIRA, L. A. de. Effect of nutritional and physical parameters on cell growth and pigment production of Serratia marcescens isolated from a legume nodule from Amazonia. Research, Society and Development, [S. l.], v. 10, n. 13, p. e394101321407, 2021. DOI: 10.33448/rsd-v10i13.21407. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21407. Acesso em: 8 dec. 2021.



Agrarian and Biological Sciences