Analysis of the chemical composition, antifungal activity and larvicidal action against Aedes aegypti larvae of the Essential Oil Cymbopogon nardus




Essential oil; Citronella; Antifungal; Larvicidal action.


The Cymbopogon nardus L. is a plant popularly known as "citronella grass", originating from Ceylon and India, used in Indonesia as a soothing and digestive tea. The essential oil of the species Cymbopogon nardus (OECN) is used in the manufacture of cosmetics and perfumes, besides having shown antimicrobial action against Escherichia coli, Salmonella spp., Pseudomonas spp., Streptococcus spp., and in addition antioxidant, anti-inflammatory. The objective of this study was to determine the larvicidal and fungicide potential of OECN extracted from the fresh leaves of C. nardus. L at the beginning of the dry season in Teresina, PI. From the OECN extracted by hydrodistillation, the actives were identified by mass gas chromatography. The larvicidal action of OECN was tested against the third and fourth larval stages of Aedes aegypti at concentrations (2.5, 5.0, 7.5 and 10 μL/20 ml) for 24 to 48 hours. Antifungal activity for Aspergillus flavus and A. parasiticus at concentrations (1.0, 2.0, 4.0 6.0 and 8.0 μL/10 mL). The OECN showed a good yield (1.0%), with 26 assets (93.2%) identified with the majority: citronelal (31.6%), geraniol (22.1%), elemol (11.8%) and citronellol (8.2%). Mortality of 100% of the larvae was observed at concentrations of 7.5 and 10.0 µl / 20 ml in 24 hours. After 48 hours 93.3% in 5.0 µl/10 ml OECN and 70% in 2.5 µl/10 ml. A. flavus showed greater sensitivity to OECN at 8.0 µl / 10 ml than A. parasiticus at concentrations. A. parasiticus was the most sensitive at concentrations of 1.0 and 2.0 µL / 10 mL. OECN has a larvicidal action and antifungal activity at the tested concentrations.


Abbott, W. (1987). A method of computing the effectiveness of an insecticide. Journal of the American Mosquito Control Association, 3(2), 302–303.

Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (Vol. 456). Allured publishing corporation Carol Stream, IL.

Aguiar, R. W. de S., Ootani, M. A., Ascencio, S. D., Ferreira, T. P., Santos, M. M. dos, & Santos, G. R. dos. (2014). Fumigant antifungal activity of Corymbia citriodora and Cymbopogon nardus essential oils and citronellal against three fungal species. The Scientific World Journal, 2014.

Andrade-Ochoa, S., Correa-Basurto, J., Rodríguez-Valdez, L. M., Sánchez-Torres, L. E., Nogueda-Torres, B., & Nevárez-Moorillón, G. V. (2018). In vitro and in silico studies of terpenes, terpenoids and related compounds with larvicidal and pupaecidal activity against Culex quinquefasciatus Say (Diptera: Culicidae). Chemistry Central Journal, 12(1), 1–21.

Ayoola, G. A., Lawore, F. M., Adelowotan, T., Aibinu, I. E., Adenipekun, E., Coker, H. A. B., & Odugbemi, T. O. (2008). Chemical analysis and antimicrobial activity of the essential oil of Syzigium aromaticum (clove). African Journal of Microbiology Research, 2(7), 162–166.

Bayala, B., Coulibaly, A. Y., Djigma, F. W., Nagalo, B. M., Baron, S., Figueredo, G., Lobaccaro, J.-M. A., & Simpore, J. (2020). Chemical composition, antioxidant, anti-inflammatory and antiproliferative activities of the essential oil of Cymbopogon nardus, a plant used in traditional medicine. Biomolecular Concepts, 11(1), 86–96.

Brady, O. J., & Hay, S. I. (2020). The global expansion of dengue: How Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annual Review of Entomology, 65, 191–208.

Brito, R., Lopes, H. M., Paulo, H. H., Lima, A. C., Fernandes, M. C. A., & Brandao, A. A. (2018). Utilização de Óleos Essenciais de Capim-limão (Cymbompogon citratus), Citronela (Cymbopogon nardus) e Óleo de Nim (Azarirachta indica) no Controle de Insetos e Microorganismos. Cadernos de Agroecologia, 13(1).

Burt, S. A., & Reinders, R. D. (2003). Antibacterial activity of selected plant essential oils against Escherichia coli O157: H7. Letters in Applied Microbiology, 36(3), 162–167.

Brasil, Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância Epidemiológica. (2009). Diretrizes nacionais para prevenção e controle de epidemias de dengue.

Cheng, S. S., Lin, C. Y., Chung, M. J., Liu, Y. H., Huang, C. G., & Chang, S. T. (2013). Larvicidal activities of wood and leaf essential oils and ethanolic extracts from Cunninghamia konishii Hayata against the dengue mosquitoes. Industrial Crops and Products, 47, 310–315.

Cheng, S.-S., Chua, M.-T., Chang, E.-H., Huang, C.-G., Chen, W.-J., & Chang, S.-T. (2009). Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresource Technology, 100(1), 465–470.

Cowen, L. E., Sanglard, D., Howard, S. J., Rogers, P. D., & Perlin, D. S. (2015). Mechanisms of antifungal drug resistance. Cold Spring Harbor perspectives in medicine, 5(7), a019752.

Cunha, B. G., Duque, C., Caiaffa, K. S., Massunari, L., Catanoze, I. A., Dos Santos, D. M., de Oliveira, S. H. P., & Guiotti, A. M. (2020). Cytotoxicity and antimicrobial effects of citronella oil (Cymbopogon nardus) and commercial mouthwashes on S. aureus and C. albicans biofilms in prosthetic materials. Archives of Oral Biology, 109, 104577.

De Toledo, L. G., Ramos, M. A. D. S., Spósito, L., Castilho, E. M., Pavan, F. R., Lopes, É. D. O., Zocolo, G. J., Silva, F. A. N., Soares, T. H., & Dos Santos, A. G. (2016). Essential oil of Cymbopogon nardus (L.) Rendle: A strategy to combat fungal infections caused by Candida species. International Journal of Molecular Sciences, 17(8), 1252.

Demok, S., Endersby-Harshman, N., Vinit, R., Timinao, L., Robinson, L. J., Susapu, M., Makita, L., Laman, M., Hoffmann, A., & Karl, S. (2019). Insecticide resistance status of Aedes aegypti and Aedes albopictus mosquitoes in Papua New Guinea. Parasites & Vectors, 12(1), 1–8.

Dias, C. N. (2013). Avaliação da atividade larvicida em Aedes aegypti L. (Diptera: Culicidae) de óleos essenciais de espécies vegetais: Um estudo de revisão e bioprospecção.

Dias, C. N., & Moraes, D. F. C. (2014). Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides. Parasitology Research, 113(2), 565–592.

Fernando, H. S. D., Saavedra-Rodriguez, K., Perera, R., Black, W. C., & De Silva, B. N. K. (2020). Resistance to commonly used insecticides and underlying mechanisms of resistance in Aedes aegypti (L.) from Sri Lanka. Parasites & Vectors, 13(1), 1-14.

Gao, S., Liu, G., Li, J., Chen, J., Li, L., Li, Z., Zhang, X., Zhang, S., Thorne, R. F., & Zhang, S. (2020). Antimicrobial activity of lemongrass essential oil (Cymbopogon flexuosus) and its active component citral against dual-species biofilms of Staphylococcus aureus and Candida species. Frontiers in Cellular and Infection Microbiology, 10.

Gonçalez, E., Silva, J. L. da, Reis, T. A., Nakai, V. K., Felicio, J. D., & Corrêa, B. (2013). Produção de aflatoxinas e ácido ciclopiazônico por cepas de Aspergillus flavus isoladas de amendoim. Arquivos Do Instituto Biológico, 80, 312–317.

Govindarajan, M., Rajeswary, M., Hoti, S. L., Bhattacharyya, A., & Benelli, G. (2016). Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitology Research, 115(2), 807–815.

Hamid, P. H., Prastowo, J., Ghiffari, A., Taubert, A., & Hermosilla, C. (2017). Aedes aegypti resistance development to commonly used insecticides in Jakarta, Indonesia. PLoS One, 12(12), e0189680.

Hamid, P. H., Prastowo, J., Widyasari, A., Taubert, A., & Hermosilla, C. (2017). Knockdown resistance (kdr) of the voltage-gated sodium channel gene of Aedes aegypti population in Denpasar, Bali, Indonesia. Parasites & Vectors, 10(1), 1–9.

Hung, N. H., Satyal, P., Hieu, H. V., Chuong, N. T. H., Dai, D. N., Huong, L. T., Tai, T. A., & Setzer, W. N. (2019). Mosquito larvicidal activity of the essential oils of Erechtites species growing wild in Vietnam. Insects, 10(2), 47.

Kandimalla, R., Kalita, S., Choudhury, B., Dash, S., Kalita, K., & Kotoky, J. (2016). Chemical composition and anti-candidiasis mediated wound healing property of Cymbopogon nardus essential oil on chronic diabetic wounds. Frontiers in Pharmacology, 7, 198.

Kaura, T., Mewara, A., Zaman, K., Sharma, A., Agrawal, S. K., Thakur, V., Garg, A., & Sehgal, R. (2019). Utilizing larvicidal and pupicidal efficacy of Eucalyptus and neem oil against Aedes mosquito: An approach for mosquito control. Tropical Parasitology, 9(1), 12.

Koba, K., Sanda, K., Guyon, C., Raynaud, C., Chaumont, J. P., & Nicod, L. (2009). In vitro cytotoxic activity of Cymbopogon citratus L. and Cymbopogon nardus L. essential oils from Togo. ||| Bangladesh Journal of Pharmacology|||, 4(1), 29–34.

Kpoviessi, S., Bero, J., Agbani, P., Gbaguidi, F., Kpadonou-Kpoviessi, B., Sinsin, B., Accrombessi, G., Frédérich, M., Moudachirou, M., & Quetin-Leclercq, J. (2014). Chemical composition, cytotoxicity and in vitro antitrypanosomal and antiplasmodial activity of the essential oils of four Cymbopogon species from Benin. Journal of Ethnopharmacology, 151(1), 652–659.

Kumar, A., Shukla, R., Singh, P., & Dubey, N. K. (2010). Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L. essential oil and its safety assessment as plant based antimicrobial. Food and Chemical Toxicology, 48(2), 539–543.

Leite, M. C. A., Bezerra, A. P. de B., Sousa, J. P., Guerra, F. Q. S., & Lima, E. de O. (2014). Evaluation of antifungal activity and mechanism of action of citral against Candida albicans. Evidence-Based Complementary and Alternative Medicine, 2014.

Leite, M. C. A., de Brito Bezerra, A. P., de Sousa, J. P., & de Oliveira Lima, E. (2015). Investigating the antifungal activity and mechanism (s) of geraniol against Candida albicans strains. Medical Mycology, 53(3), 275–284.

Lima Santos, L., Barreto Brandão, L., Lopes Martins, R., de Menezes Rabelo, E., Lobato Rodrigues, A. B., da Conceição Vieira Araújo, C. M., Fernandes Sobral, T., Ribeiro Galardo, A. K., de Ameida, M. da S., & Susan, S. (2019). Evaluation of the larvicidal potential of the essential oil pogostemon cablin (Blanco) Benth in the control of Aedes aegypti. Pharmaceuticals, 12(2), 53.

Liu, X. C., Dong, H. W., Zhou, L., Du, S. S., & Liu, Z. L. (2013). Essential oil composition and larvicidal activity of Toddalia asiatica roots against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitology Research, 112(3), 1197–1203.

Marco, C. A., Innecco, R., Mattos, S. H., Borges, N. S., & Nagao, E. O. (2007). Características do óleo essencial de capim-citronela em função de espaçamento, altura e época de corte. Horticultura Brasileira, 25, 429–432.

Martianasari, R., & Hamid, P. H. (2019). Larvicidal, adulticidal, and oviposition-deterrent activity of Piper betle L. essential oil to Aedes aegypti. Veterinary World, 12(3), 367.

Mondello, F., De Bernardis, F., Girolamo, A., Cassone, A., & Salvatore, G. (2006). In vivo activity of terpinen-4-ol, the main bioactive component of Melaleuca alternifolia Cheel (tea tree) oil against azole-susceptible and-resistant human pathogenic Candida species. BMC Infectious Diseases, 6(1), 1–8.

Nakahara, K., Alzoreky, N. S., Yoshihashi, T., Nguyen, H. T., & Trakoontivakorn, G. (2013). Chemical composition and antifungal activity of essential oil from Cymbopogon nardus (citronella grass). Japan Agricultural Research Quarterly: JARQ, 37(4), 249–252.

Ndiath, M. O. (2019). Insecticides and insecticide resistance. In Malaria Control and Elimination (pp. 287-304). Humana, New York, NY.

Nzeako, B. C., Al-Kharousi, Z. S., & Al-Mahrooqui, Z. (2006). Antimicrobial activities of clove and thyme extracts. Sultan Qaboos University Medical Journal, 6(1), 33.

Pavarini, D. P., Pavarini, S. P., Niehues, M., & Lopes, N. P. (2012). Exogenous influences on plant secondary metabolite levels. Animal Feed Science and Technology, 176(1–4), 5–16.

Pavela, R. (2015). Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitology Research, 114(10), 3835–3853.

Pavela, R. (2016). History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects–a review. Plant Protection Science, 52(4), 229–241.

Pereira, F. de O., Mendes, J. M., Lima, I. O., Mota, K. S. de L., Oliveira, W. A. de, & Lima, E. de O. (2015). Antifungal activity of geraniol and citronellol, two monoterpenes alcohols, against Trichophyton rubrum involves inhibition of ergosterol biosynthesis. Pharmaceutical Biology, 53(2), 228–234.

Perlin, D. S., Rautemaa-Richardson, R., & Alastruey-Izquierdo, A. (2017). The global problem of antifungal resistance: prevalence, mechanisms, and management. The Lancet Infectious Diseases, 17(12), e383-e392.

Pinto, E., Vale-Silva, L., Cavaleiro, C., & Salgueiro, L. (2009). Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and Dermatophyte species. Journal of Medical Microbiology, 58(11), 1454–1462.

Prado, G., de Assis Souza, R., Morais, V. A. D., Madeira, J. E. G. C., de Oliveira, M. S., de Andrade, M. C., de Godoy, I. J., Rosa, C. A., Junior, A. C., & Peluzio, J. M. (2008). Influência de Saccharomycopsis schoenii e Saccharomycopsis crataegensis na produção de aflatoxinas B1 e G1 por Aspergillus parasiticus em amendoim (Arachis hypogaea L.). Revista Do Instituto Adolfo Lutz, 67(3), 177–182.

Rocha, H. C. R., Alvarenga, C. D., Giustolin, T. A., Brant, R. S., Souza, M. D. C., Sarmento, H. G. S., & Barbosa, M. G. (2012). Crescimento, produção de fitomassa e teor de óleo essencial de folhas de capim citronela (Cymbopogon nardus (L.) Rendle) em cultivo consorciado com algodoeiro colorido no semiárido mineiro. Revista Brasileira de Plantas Medicinais, 14, 183–187.

Rodrigues, N. C. P., Lino, V. T. S., Daumas, R. P., Andrade, M. K. de N., O’Dwyer, G., Monteiro, D. L. M., Gerardi, A., Fernandes, G. H. B. V., Ramos, J. A. S., & Ferreira, C. E. G. (2016). Temporal and spatial evolution of dengue incidence in Brazil, 2001-2012. PLoS One, 11(11), e0165945.

Ryan, S. J., Mundis, S. J., Aguirre, A., Lippi, C. A., Beltrán, E., Heras, F., Sanchez, V., Borbor-Cordova, M. J., Sippy, R., & Stewart-Ibarra, A. M. (2019). Seasonal and geographic variation in insecticide resistance in Aedes aegypti in southern Ecuador. PLoS Neglected Tropical Diseases, 13(6), e0007448.

Sarma, R., Adhikari, K., Mahanta, S., & Khanikor, B. (2019). Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera: Culicidae). Scientific Reports, 9(1), 1–12.

Satoto, T. B. T., Satrisno, H., Lazuardi, L., & Diptyanusa, A. (2019). Insecticide resistance in Aedes aegypti: An impact from human urbanization? Plos One, 14(6), e0218079.

Sayono, S., Hidayati, A. P. N., Fahri, S., Sumanto, D., Dharmana, E., Hadisaputro, S., Asih, P. B. S., & Syafruddin, D. (2016). Distribution of voltage-gated sodium channel (Nav) alleles among the Aedes aegypti populations in central Java Province and its association with resistance to pyrethroid insecticides. PLoS One, 11(3), e0150577.

Scalvenzi, L., Radice, M., Toma, L., Severini, F., Boccolini, D., Bella, A., Guerrini, A., Tacchini, M., Sacchetti, G., & Chiurato, M. (2019). Larvicidal activity of Ocimum campechianum, Ocotea quixos and Piper aduncum essential oils against Aedes aegypti. Parasite, 26.

Silva, F. F. da. (2017). Potencial toxicológico e o impacto do piriproxifeno nos parâmetros zootécnicos de tilápia do nilo (Oreochromis niloticus Linnaeus, 1758).

Silva, I. M., Martins, G. F., Melo, C. R., Santana, A. S., Faro, R. R., Blank, A. F., Alves, P. B., Picanço, M. C., Cristaldo, P. F., & Araújo, A. P. A. (2018). Alternative control of Aedes aegypti resistant to pyrethroids: Lethal and sublethal effects of monoterpene bioinsecticides. Pest Management Science, 74(4), 1001–1012.

Simas, N. K., Lima, E. da C., Conceição, S. da R., Kuster, R. M., Oliveira Filho, A. M. de, & Lage, C. L. S. (2004). Natural products for dengue transmission control: Larvicidal activity of Myroxylon balsamum (red oil) and of terpenoids and phenylpropanoids. Quimica Nova, 27(1), 46–49.

Souza, E. L. de, Lima, E. de O., Freire, K. R. de L., & Sousa, C. P. de. (2005). Inhibitory action of some essential oils and phytochemicals on the growth of various moulds isolated from foods. Brazilian Archives of Biology and Technology, 48, 245–250.

Tabari, M. A., Youssefi, M. R., Esfandiari, A., & Benelli, G. (2017). Toxicity of β-citronellol, geraniol and linalool from Pelargonium roseum essential oil against the West Nile and filariasis vector Culex pipiens (Diptera: Culicidae). Research in Veterinary Science, 114, 36–40.

Tak, J.-H., & Isman, M. B. (2017). Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper, Trichoplusia ni. Scientific Reports, 7(1), 1–11.

Tang, X., Shao, Y.-L., Tang, Y.-J., & Zhou, W.-W. (2018). Antifungal activity of essential oil compounds (geraniol and citral) and inhibitory mechanisms on grain pathogens (Aspergillus flavus and Aspergillus ochraceus). Molecules, 23(9), 2108.

Teixeira, B., Marques, A., Ramos, C., Neng, N. R., Nogueira, J. M., Saraiva, J. A., & Nunes, M. L. (2013). Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Industrial Crops and Products, 43, 587–595.

Veloso, R. A., de Castro, H. G., Cardoso, D. P., Chagas, L. F. B., & Júnior, A. F. C. (2015). Óleos essenciais de manjericão e capim citronela no controle de larvas de Aedes aegypti. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 10(2), 16.

Viana, D. V., & Ignotti, E. (2013). The ocurrence of dengue and weather changes in Brazil: A systematic review. Revista Brasileira de Epidemiologia, 16, 240–256.

Vieira Santos, V. S., Caixeta, E. S., Campos Júnior, E. O. de, & Pereira, B. B. (2017). Ecotoxicological effects of larvicide used in the control of Aedes aegypti on nontarget organisms: Redefining the use of pyriproxyfen. Journal of Toxicology and Environmental Health, Part A, 80(3), 155–160.

Waliwitiya, R., Kennedy, C. J., & Lowenberger, C. A. (2009). Larvicidal and oviposition‐altering activity of monoterpenoids, trans‐anithole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Pest Management Science: Formerly Pesticide Science, 65(3), 241–248.

Wasternack, C., & Song, S. (2017). Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. Journal of Experimental Botany, 68(6), 1303–1321.

Wasternack, C., & Strnad, M. (2019). Jasmonates are signals in the biosynthesis of secondary metabolites—Pathways, transcription factors and applied aspects—A brief review. New Biotechnology, 48, 1–11.

Wei, L. S., & Wee, W. (2013). Chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against systemic bacteria of aquatic animals. Iranian Journal of Microbiology, 5(2), 147.

World Health Organization (2005). Guidelines for laboratory and field testing of mosquito larvicides (No. WHO/CDS/WHOPES/GCDPP/2005.13). World Health Organization.

Wu, Y., OuYang, Q., & Tao, N. (2016). Plasma membrane damage contributes to antifungal activity of citronellal against Penicillium digitatum. Journal of Food Science and Technology, 53(10), 3853–3858.

Yingngam, B., Supaka, N., & Rungseevijitprapa, W. (2015). Optimization of process parameters for phenolics extraction of Cratoxylum formosum ssp. Formosum leaves by response surface methodology. Journal of Food Science and Technology, 52(1), 129–140.

Zara, A. L. de S. A., Santos, S. M. dos, Fernandes-Oliveira, E. S., Carvalho, R. G., & Coelho, G. E. (2016). Estratégias de controle do Aedes aegypti: Uma revisão. Epidemiologia e Serviços de Saúde, 25, 391–404.




How to Cite

BRITO, L. C. F.; DIAS, L. M. F. .; PEREIRA, G. S. S.; ALVES, N. B.; ROCHA, M. dos S.; SOUSA JUNIOR, J. F. de .; BARROS, V. C.; MURATORI, M. C. S. . Analysis of the chemical composition, antifungal activity and larvicidal action against Aedes aegypti larvae of the Essential Oil Cymbopogon nardus . Research, Society and Development, [S. l.], v. 10, n. 13, p. e543101321452, 2021. DOI: 10.33448/rsd-v10i13.21452. Disponível em: Acesso em: 4 dec. 2021.



Health Sciences