The use of Thinkercad tool and Scratch language to teach the programming fundamentals in Internet of Things

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.22094

Keywords:

Tinkercad; Scratch language; Internet of things; Programming basics.

Abstract

Over the last years, the Internet of Things (IoT) has been used in different fields of knowledge, such as industrial area, a health area and logistics, among many others. The enormous connectivity between devices and people is generating new solutions to a number of everyday problems. It is well known that, many devices are built, in addition to micro controlled systems, by sensors and/or actuators capable of reading external signals of the environment or even causing controlled changes, in order to generate movements and desired actions in this same environment. In this sense, the present study has evaluated the effectiveness of the Tinkercad tool, combined with the Scratch language, to teach students of bachelor’s courses of Computer Science, Information Systems and Technologies in Informatics, the main programming fundamentals associated with use of sensors in applications commonly found in the Internet of Things area. At the end of the classes, a questionnaire based on the Likert scale was used to assess different aspects of the student’s understanding of the use of Tinkercad and Scratch language in the developed exercises. A total of 174 students answered the questionnaire, and it was possible to verity that the aforementioned tool and the Scratch language actually offer a very favorable computational environment not only for the study of computational logic, but also for a better understanding of the functioning of some types of sensors normally applied in automation and particularly in the field of Internet of Things.

References

Abburi, R., Praveena, M., Priyakanth, R. (2021). TinkerCad – a Web Based Application for Virtual Labs to Help Learners Think, Create and Make. Journal of Engineering Education Transformations. 34. 535-541.

Bandeira, L.M.S.A., Araújo, N.R.R.F., Farias, F.L.O., Barros, A. C.M., Queiroz, J.F., Nunes, I.D. & Oliveira, L.A.H.G. (2019) Instrumento de Avaliação do Software Educational “Tinkercad”: uma Visão fundamentada na BNCC. VIII Congresso Brasileiro de Informática (CBIE 2019), 1324-1328.

Berrocoso, J., Sánchez, M. & Arroyo, M. (2015). “El pensamiento computacional y las nuevas ecologías del aprendizage”. RED-Revista de Educación a Distancia, 46(3).

Chabanet, S., Haouzi-El, H.B. & Thomas, P. (2021). Coupling Digital Simulation and Machine Learning Metamodel Through an Active Learning Approach in Industry 4.0 context. Computers in Industry. 133. 1-12.

Chowdhury, A. T., Muktadir, S. & Zakir, G. S. (2021). Smartgeiger – Development of Background Radiation Monitoring With IoT Based Device. International Conference on Automation, Control and Mechatronics for Industry (ACMI), 1- 6.

Cobo, C. J., Puris, A., Hernández, P. N., Galindo, J.A. & Benavides, D. (2020). Recommender Systems and Scratch: An Integrated Approach for Enhancing Computer Programming Learning. IEEE Transactions on Learning Technologies, 13(2). 387-403.

Cornetta, G., Touhafi, A., Togou, M.A. & Muntean, G. (2020). Fabrication-as-a-Service: A Web-Based Solution for STEM Education Using Internet of Things. IEEE Internet of Things Journal, 7(2). 1519-1530.

Dias, C.G., Feitosa, N.T. & Silva da, L.C. (2020). The Use of Scilab-Cloud for Teaching Digital Signal Processing Concepts in Electrical Engineering Curricula. American Scientific Research Journal of Engineering, Technology and Sciences (ASRJETS), 74(1). 101-114.

Dias, C.G. & Silva da, L.C. (2021). A Virtual-Lab Tool for Teaching the Fundamentals of a DC Motor-Generator Operation Using Excel-VBA. International Journal of Computer Applications, 183(24). 1-8.

Díaz, L. M., Hernández, C. M., Ortiz, A. V. & Gaytán-Lugo, L. S. (2019). Tinkercad and Codeblocks in a Summer Course: an Attempt to Explain Observed Engagement and Enthusiasm. IEEE Blocks and Beyond Workshop (B&B), 43-47.

Eryilmaz, S. & Deniz, G. (2021). Effect of Tinkercad on Students’ Computational Thinking Skills and Perceptions: a Case of Ankara Province. The Turkish Online Journal of Educational Technology, 20 (1). 25-38.

Fukumoto, H., Yamaguchi, T., Ishibashi, M. & Furukawa, T. (2021). Developing a Remote Laboratory System of Stepper Motor for Learning Support. IEEE Transactions on Education, 64(3). 292-298.

Gil, A. C. (2002). Como elaborar projetos de pesquisa. Editora Atlas.

Giraffa, L. M. M. & Müller, L. (2017). Metodologia baseada em sala de aula invertida e resolução de problemas relacionado ao cotidiano dos estudantes: uma proposta para ensinar programação para iniciantes. International Journal on Computational Thinking, 1 (1). (52-67).

Gruenewald, A., Giesser, C., Buechner, S., Gibas, C. & Brueck, R. (2021). Going Virtual: Teaching Practical Skills of Circuit Design and Programming for Heterogeneous Groups Online. IEEE Global Engineering Education Conference (EDUCON), 404-412.

Kinjo, M. E., Librantz, A.F.H., de Souza, E. M. & Galdino, M. (2021). Criticality assessment of the components of IoT system in health using the AHP method. Research, Society and Development, 10 (2). 1-14.

Magnus, D. M., Carbonera, L.F.B., Pfitscher, L.L., Farret, F.A., Bernardon, D.P. & Tavares, A.A. (2020). An Educational Laboratory Approach for Hybrid Project-Based Learning of Synchronous Machine Stability and Control: A Case Study. 63(1). 48-55.

Mena, D. M., Papapanagiotou, I., & Yang, B. (2018). Internet of things: Survey on security. Information Security Journal: A Global Perspective. 27 (3). 162-

Mohapatra, B. N., Mohapatra, R.K., Joshi, J. & Zagade, S. (2020). Easy performance based learning of Arduino and sensors through Tinkercad. International Journal of Open Information Technologies, 8 (10). 73-76.

Oliveira, S. (2017). Internet das Coisas com ESP8266, Arduino e Raspberry PI. Novatec Editora Ltda.

Oliveira, C. M. & Pereira, R. (2019). Desenvolvimento do Pensamento Computacional no Ensino Superior em Ciência da Computação. VIII Congresso Brasileiro de Informática na Educação (CBIE 2019). Anais dos Workshops do VIII Congresso Brasileiro de Informática na Educação (WCBIE 2019), 1502-1506.

Pate, K., Borole, S., Ramaneti, K., Hejib, A. & Sing, R.R. (2020). Design and Implementation of Sun Tracking Solar Panel and Smart Wiping Mechanism Using Tinkercad. Materials Science and Engineering IOF Conf. Series, 1-13.

Paul, B., Paul, C., Varghese, A. S. P., Shajoo, S. & Kurian, N. (2018). Design of a Power Feeder for Elderly & Simulation of Motor Circuit Developed using AUTODESK TINKERCAD. International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET), 1-4.

Rahmani, A.M., Liljeberg, P., Preden, J.S & Jantsch, A. (2018). Fog Computing in the Internet of Things: Intelligence at the Edge. Springer, Switzerland.

Resnick, M. (2020). Jardim de infância para a vida toda: por uma aprendizagem criativa, mão na massa e relevante para todos. Tradução: Mariana Casetto Cruz e Lívia Rulli Sobral. Revisão Técnica: Carolina Rodeghiero e Leo Burd. Porto Alegre: Penso.

Resnick, M. (2009). Sowing the Seeds for a more Creative Society. CHI '09: SIGCHI Conference on Human Factors in Computing Systems, 1-6.

Rezende, C. & Bispo, E. (2018). Comparison between the use of pseudocode and visual programming in programming teaching: An evaluation from scratch tool. IEEE 13th Iberian Conference on Information Systems and Technologies (CISTI), 1-5.

Salazar, R., Odakura, V., Barvinski, C. (2015). Scratch no ensino superior: motivação. CBIE-LACLO 2015. Anais do XXVI Simpósio Brasileiro de Informática na Educação, 1293-1302.

Schwab, K. & Davis, N. (2018). Aplicando a Quarta Revolução Industrial. World Economic Forum. EDIPRO.

Shalannanda, W. (2020). Digital Logic Design Laboratory Using Autodesk Tinkercad and Google Classrom. 14th International Conference on Telecommunication Systems, Services, and Applications (TSSA), 1-5.

Souza, F. (2014). Arduino UNO – Taxa de amostragem do conversor A/D. Recuperado em 10 de Outubro, 2021, a partir de https://www.embarcados.com.br/arduino-taxa-de-amostragem-conversor-ad/

Vourletsis, I. & Politis, P., (2020). Effects of a Computational Thinking Experimental Course on Students' Perceptions of Their Problem-Solving Skills. 9th International Conference on Educational and Information Technology (ICEIT 2020), 14-20.

Wing, J. M. (2006). Computational Thinking, CACM, 49(3), 33-35.

Wing, J. M. (2008). Computational thinking and thinking about computing. Phil. Trans. R. Soc. A, 366, 3717–3725.

Published

08/11/2021

How to Cite

DIAS, C. G.; EVARISTO, I. S.; RORIS FILHO, A.; TERÇARIOL, A. A. de L. The use of Thinkercad tool and Scratch language to teach the programming fundamentals in Internet of Things. Research, Society and Development, [S. l.], v. 10, n. 14, p. e436101322094, 2021. DOI: 10.33448/rsd-v10i14.22094. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22094. Acesso em: 16 nov. 2024.

Issue

Section

Educational Objects