Efeito Effect of blood contact and saline solution on volume change and solubility of MTA HP Repair®, Bio-C Repair®, MTA Flow® and Bio-C Repair+®

Authors

DOI:

https://doi.org/10.33448/rsd-v10i15.22143

Keywords:

Calcium silicate; Solubility; Surgical endodontics; Micro-computed tomography; Physicochemical properties.

Abstract

The aim of the present study was to evaluate the effect of contact with blood and saline on the change in volume and solubility of calcium silicate cements MTA HP Repair®, Bio-C Repair®, MTA Flow® and Bio-C Repair ION.  After inserting the materials into retrograde cavities, they were scanned using a microtomograph 1174 (T0), and then placed in contact with blood and saline. After 07 days of contact, the specimens were scanned again (T01), and the volume change and was analyzed. The data were submitted to statistical analysis using the WILCOXON, MAN WHITNEY and KRUSKAL-WALLIS tests (p<0.05). The contact of saline with Bio-C Repair ION+ cement increased its volume. The blood produced an increase in the solubility of MTA HP and MTA Flow. The Bio-C Repair and Bio-C Repair ION+ cements did not undergo change in volume when in contact with blood. Lower volume change values occurred in pre-mixed repair cements when they came into contact with blood.

Author Biographies

Carlos Alberto Herrero de Morais, Universidade Estadual de Maringá

Department of Dentistry

Maringá State University, PR

Lyz Cristina Furquim Canali, Universidade de São Paulo

PhD in Endodontics, Bauru School of Dentistry, USP, SP

Jussaro Alves Duque, Universidade de São Paulo

PhD in Endodontics, Bauru School of Dentistry, USP, SP

Murilo Priori Alcalde, Universidade de São Paulo

PhD in Endodontics, Bauru School of Dentistry, USP, SP

Department of Dentistry, Endodontics and Dental Materials

Professor of Endodontics, Faculty of Dentistry of Bauru, USP, SP

 

Rodrigo Ricci Vivan, Universidade de São Paulo

Department of Dentistry, Endodontics and Dental Materials

Bauru School of Dentistry, USP, SP

Marco Antonio Hungaro Duarte, Universidade de São Paulo

Department of Dentistry, Endodontics and Dental Materials

Bauru School of Dentistry, USP, SP

References

Akinci L., Simsek N., & Aydinbelge H. A. (2020). Physical properties of MTA, BioAggegate and Biodentine in simulated conditions: A micro-CT analysis. Dental materials journal, 1-7.

Belobrov I. & Parashos P. (2011). Treatment of tooth discoloration after the use of white mineral trioxide aggregate. Journal of endodontics., 37 (7), 1017-1020.

Camilleri J. (2008). Characterization of hydration products of mineral trioxide aggregate. International endodontic journal, 41, 408–417.

Camilleri J. (2017). Will bioceramics be the Future Root Canal Filling Materials? Dental restorative materials, Curr oral health rep.

Camilleri J. (2020). Classification of hydraulic cements used in dentistry. Frontiers in dental medicine, 1, (9), 1-6.

Candeiro G. T., Moura-Netto C., D’Almeida-Couto R. S., Azambuja-Junior, N., Marques M. M., Cai S., & Gavini G. (2016) Cytotoxity, genotoxicity and antibacterial effectiviness of bioceramic endodontic sealer. International endodontic journal, 49, 858-864.

Canali L. C. F., Morais C. A. H., Cavenago B. C., Vivan R. R., & Duarte M. A. H. (2016). Influência do contato com sangue e soro fisiológico na solubilidade, pH e constituição química do MTA. Dental press endodontics, 6, (3), 41- 45.

Cavenago B. C., Pereira T. C., Duarte M. A. H., Ordinola-Zapata R., Marciano M. A., Bramante C. M., & Bernardineli N. (2014). Influence of powder-to-water ratio on radiopacity, setting time, pH, calcium release and micro-CT volumetric solubility of white mineral trioxide aggregate. International endodontic journal, 47, 120-126.

Cavenago B. C., Carpio-Perochena A. E. D., Ordinola-Zapata R., Estela C., Garlet G. P., Tanomaru-Filho M., Weckwerth P. H., Andrade F. B., & Duarte M. A. H. (2017). Effect of using different vehicles on the physicochemical, antimicrobial, and biological properties of mineral trioxide aggregate. Journal of endodontics, 43, 779-786.

Cintra, L. T. A., Benetti F., Queiroz I. O. A., Lopes J. M. A., Oliveira S. H. P., Araújo G. S., & Gomes-Filho J. E. (2017). Cytotoxicity, biocompatibility, and biomineralization of the new high-plasticity MTA material. Journal of endodontics, 43, 774-778.

Hungaro Duarte M. A., Minotti P. G., Rodrigues C. T. et al. (2012). Effect of different radiopacifying agents on the physicochemical properties of white Portland cement and white mineral trioxide aggregate. Journal of endodontics, 38, (3), 394-397.

Fridland M. & Rosado R. (2003). Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. Journal of endodontics, 29, 814–817.

Guimarães B. M., Prati C., Duarte M. A. H., Bramante C. M., & Gandolfi M. G. (2018). Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem. Jaos, 26, 1-8.

Holland R., de Souza V., Nery M. J. et al. (2002). Calcium salts deposition in rat connective tissue after the implantation of calcium hydroxide-containing sealers. Journal of endodontics, 28,173-176.

International Organization for Standardization (2001). Dental root canal sealing materials, ISO 6786.

Koh E. T. et al. (1997). Mineral trioxide aggregate stimulates a biological response in human osteoblasts. Journal of biomed materials research, 37, (3), 432-439.

Kohli M. R., Yamaguchi M., Setzer F. C., & Karabucak B. (2015). Spectrophotometric analysis of coronal tooth discolorations induced by various bioceramic cements e other endodontic material. Journal of endodontics, 41, 1862-1866, 2015.

Loushine, B. A., Bryan T. E., & Looney S. W. (2011). Setting properties and cytotoxicity evaluation of premixed bioceramic root canal sealer. Journal of endodontics, 37, 673-677.

Marciano M. A., Camillieri J., Costa R. M., Matsumoto M. A., Guimarães B. M., & Duarte M. A. H. (2017). Zinc oxide inhibits dental discoloration caused by white mineral aggregate angelus. Journal of endodontics, 43, 1001-1007.

Morais C. A. H. et al. Evaluation of tissue response to MTA and Portland cement with iodoform. (2006). Oral surgery oral medicine oral pathology oral radiology endodontics, 102, 417-421.

Nekoofar M. H., Aseeley Z., & Dummer P. M. (2010). The effect of various mixing techniques on the surface microhardness of mineral trioxide aggregate. International endodontic journal, 43, 312–320.

Nekoofar M. H., Oloomi K., Sheykhrezae M. S., Tabor R., Stone D. F., & Dummer P. M. H. (2010). An evaluation of the effect of blood and human serum on the surface microhardness and surface microstructure of mineral trioxide aggregate. International endodontic journal, 43, 849-858.

Orstavik D. (2014). Endodontic filling materials. Endodontic topics. 31, 53–67.

Parirokh M. & Torabinejad M. (2010). Mineral trioxide aggregate: a comprehensive literature review–Part I: chemical, physical, and antibacterial properties. Journal of endodontics, 36, 16–27.

Siboni F., Taddei P., Zamparini F., Prati C., & Gandolfi M. G. (2017). Properties of BioRoot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. International endodontic journal, 50, 120 –136.

Silva E. J. N. L., Carvalho N. K., Guberman M. R. C., Pardo M., Senna P. M., Souza E. M., & De-Deus G. (2017). Push out bond strength of fast-setting mineral trioxide aggregate and pozzolan-based cements: Endocem MTA and Endocem Zr. Journal of endodontics, 43, 801-804.

Sisli S. N. & Ozbas H. (2017). Comparative micro-computed tomographic evaluation of the sealing quality of Pro Root MTA and MTA Angelus apical plugs placed with various techniques. Journal of endodontics, 43, 147-151.

Slattery C. & Beaumont D. (1989). Sheep platelets as a model for human platelets: Evidence for specific PAF (Platelet Activating Factor) receptors. Thrombosis research, 55,569-576.

Torabinejad M., Hong C. U., McDonald F., & Pitt Ford T. R. (1995). Physical and chemical properties of a new root-end filling material. Journal of endodontics, 21, 349–353.

Torabinejad M., Hong C. U., Pitt Ford T. R., & Kaiyawasam S. P. (1995). Tissue reaction to implanted super-EBA and mineral trioxide aggregate in the mandible of guinea pigs: a preliminary report. Journal of endodontics, 21, 569–571.

Torabinejad M., Pitt Ford T. R., McKendry D. J., Abedi H. R., Miller D. A., & Kariyawasam S. P. (1997). Histologic assessment of mineral trioxide aggregate as a root-end filling in monkeys. Journal of endodontics, 23, 225–228.

Torabinejad M. & Chivian N. (1999). Clinical applications of mineral trioxide aggregate. Journal of endodontics, 25, (3),197-205.

Torabinejad M et al. (1995). Investigation of mineral trioxide aggregate for root-end filling in dogs. Journal of endodontics, 21, (12), 603-607.

Wu M. K. et al. (1995). A 1-year follow-up study on leakage of four root canal sealers at different thicknesses. International endodontics journal., 28,185-189.

Published

27/11/2021

How to Cite

MORAIS, C. A. H. de; CANALI, L. C. F.; DUQUE, J. A. .; ALCALDE, M. P. .; VIVAN, R. R.; DUARTE, M. A. H. Efeito Effect of blood contact and saline solution on volume change and solubility of MTA HP Repair®, Bio-C Repair®, MTA Flow® and Bio-C Repair+®. Research, Society and Development, [S. l.], v. 10, n. 15, p. e295101522143, 2021. DOI: 10.33448/rsd-v10i15.22143. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22143. Acesso em: 6 jan. 2025.

Issue

Section

Health Sciences