Antibacterial and antibiofilm lectins from plants – a review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i15.22595

Keywords:

Bacterial resistance; Biofilm; Infection; Proteins; Plant products.

Abstract

The number of multidrug-resistant bacteria that affect public health has been rising, and there are limited therapy resources to deal with these pathogens. The formation of biofilm by bacteria, makes therapy even harder. In this regard, natural products have been increasingly used as source for new antimicrobial agents and lectins have stood out as a promising option. Thus, this work aims to review on plant lectins with antibacterial and antibiofilm properties against pathogenic microorganisms. Several lectins, extracted from Punica granatum (PgTeL), Portulaca elatior (PeRol), Curcuma longa L. (CLA), Sterculia foetida L. (SfL), Apuleia leiocarpa (ApulSL), Schinus terebinthifolius (SteLL), Archidendron jiringa Nielsen (AjL) e Phthirusa pyrifolia (PpyLL), demonstrated antibacterial activity. Canavalia ensiformis (ConA), Calliandra surinamensis (Casul), Solanum tuberosum (StL-20), Canavalia marítima (ConM) demonstrated antibiofilm activity. Moreover, lectins from Alpinia purpurata (ApuL) e Moringa oleífera (WSMoL) demonstrated both potentials. Therefore, this review gathered substantial evidence that these lectins might constitute therapeutic alternative to treat infections caused by multidrug-resistant and biofilm-producing Gram-positive e Gram-negative bacteria in the future.

References

Allison, D., Delancey, E., Ramey, H., Williams, C., Alsharif, Z.A., Al-Khattabi, H., Ontko, A., Gilmore, D., Alam, M.A. (2017). Synthesis and antimicrobial studies of novel derivatives of 4-(4-formyl-3-phenyl-1H-pyrazol-1-yl) benzoic acid as potent anti-Acinetobacter baumannii agents. Bioorg Med Chem Lett., 27 (3), 387-392. doi: 10.1016/j.bmcl.2016.12.068.

Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M. K. F. (2018). Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist., 11, 1645. doi:10.2147/IDR.S173867.

Bai, C. Z., Hao, J. Q., Hao, X. L., Feng, M. L. (2018). Preparation of Astragalus membranaceus lectin and evaluation of its biological function. Biomed Rep. 9 (4), 345-349. doi:10.3892/br.2018.1132.

Bala Subramaniyan, S., Senthilnathan, R., Arunachalam, J., Anbazhagan, V. (2019). Revealing the Significance of the Glycan Binding Property of Butea monosperma Seed Lectin for Enhancing the Antibiofilm Activity of Silver Nanoparticles against Uropathogenic Escherichia coli. Bioconjug Chem. 31 (1), 139-148. doi: 10.1021/acs.bioconjchem.9b00821.

Bhutia, S. K., Panda, P. K., Sinha, N., Praharaj, P. P., Bhol, C. S., Panigrahi, D. P., Mahapatra, K. K., Saha, S., Patra, S., Mishra, S. R., Behera, B. P. (2019). Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacol Res. 144, 8-18. doi: 10.1016/j.phrs.2019.04.001.

Braga, A. A., e Lacerda, R. R., de Vasconcelos Medeiros, G. K. V., Gonçalves, G. F., Pessoa, H. D. L. F., Cardoso, J. D., de Almeida Gadelha, C. A., da Silva, B. A., Santi-Gadelha, T. (2015). Antibacterial and hemolytic activity of a new lectin purified from the seeds of Sterculia foetida L. Appl Biochem Biotechnol. 175 (3), 1689-1699. doi: 10.1007/s12010-014-1390-4.

Breitenbach, B. C., L.C., Marcelino, S. S., P., Felix, O., W., Moura, M. C., Viana, P., E., Soares, G., F., Guedes Paiva, P. M., Napoleão, T. H., dos Santos Correia, M. T. (2018). Lectins as antimicrobial agents. J Appl Microbiol. 125 (5), 1238-1252. doi: 10.1111/jam.14055.

Butler, M. S., Robertson, A. A., Cooper, M. A. (2014). Natural product and natural product derived drugs in clinical trials. Nat Prod Rep., 31 (11),1612-1661. doi: 10.1039/C4NP00064A.

Cain, A. K., Nolan, L. M., Sullivan, G. J., Whitchurch, C. B., Filloux, A., Parkhill, J. (2019). Complete genome sequence of Pseudomonas aeruginosa reference strain PAK. Microbiol Resour Announc.8:e00865-19. doi: 10.1128/MRA.00865-19.

Camaroti, J. R. S. L., de Almeida, W. A., do Rego Belmonte, B., de Oliveira, A. P. S., de Albuquerque Lima, T., Ferreira, M. R. A., Paiva, P. M. G., Soares, L. A. L., Pontual, E. V., Napoleão, T. H. (2018). Sitophilus zeamais adults have survival and nutrition affected by Schinus terebinthifolius leaf extract and its lectin (SteLL). Ind Crops Prod. 116, 81-89. doi: 10.1016/j.indcrop.2018.02.065.

Cantas, L., Shah, S. Q. A., Cavaco, L. M., Manaia, C., Walsh, F., Popowska, M., Garelick, H., Bürgmann, H., Sørum, H. (2013). A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol., 4 (96). doi: 10.3389/fmicb.2013.00096.

Cavalcante, T. T. A., Anderson, M. da R., B., Alves Carneiro, V., Vassiliepe, S. A., F., Fernandes, N., A. S., Cardoso Sá, N., Nascimento, K. S., Sousa Cavada, B., Holanda Teixeira, E. (2011). Effect of lectins from Diocleinae subtribe against oral Streptococci. Molecules, 16 (5), 3530-3543. doi: 10.3390/molecules16053530.

Cavalcante, T. T. A., Carneiro, V. A., Neves, C. C., Queiroz M., M. G., Arruda, F. V. S., de Vasconcelos, M. A., dos Santos, H. S., Silva, C., R. M., Cavada, B. S., Teixeira, E. H. (2013). A ConA-like lectin isolated from Canavalia maritima seeds alters the expression of genes related to virulence and biofilm formation in Streptococcus mutans. Adv Biosci Biotechnol, 4, 1073-7078. doi: 10.4236/abb.2013.412143.

Centers for Disease Control and Prevention, 2019. Antibiotic resistance threats in the United States. (2019). U.S. Department of Health and Human Services, CDC, Atlanta. doi: 10.15620/cdc:82532.

Charungchitrak, S., Petsom, A., Sangvanich, P., Karnchanatat, A. (2011). Antifungal and antibacterial activities of lectin from the seeds of Archidendron jiringa Nielsen. Food Chem., 126 (3), 1025-1032. doi: 10.1016/j.foodchem.2010.11.114.

Costa, R. M., Vaz, A. F., Oliva, M. L., Coelho, L. C., Correia, M. T., Carneiro-da-Cunha, M. G. (2010). A new mistletoe Phthirusa pyrifolia leaf lectin with antimicrobial properties. Process Biochem., 45 (4), 526-533. doi: 10.1016/j.procbio.2009.11.013.

Cragg, G. M., Newman, D. J. (2013). Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830 (6), 3670-3695. doi: 10.1016/j.bbagen.2013.02.008. doi: 10.1016/j.bbagen.2013.02.008.

Cress, B. F., Englaender, J. A., He, W., Kasper, D., Linhardt, R. J., Koffas, M. A. (2014). Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules. FEMS Microbiol. Rev. 38 (4), 660-697. doi: 10.1111/1574-6976.12056.

Silva, P. M., Baldry, M., Peng, P., de Oliveira Silva, J. N., Soares, T., Brayner, F. A., Alves, L. C., Feitosa, A. P. S., Paiva, P. M. G., Ingmer, H. and Napoleão, T.H. (2019a). Punica granatum sarcotesta lectin (PgTeL) impairs growth, structure, viability, aggregation, and biofilm formation ability of Staphylococcus aureus clinical isolates. Int. J. Biol Macromol. 123, 600-608. doi: 10.1016/j.ijbiomac.2018.11.030.

Silva, J. D. F., da Silva, S. P., da Silva, P. M., Vieira, A. M., de Araújo, L. C. C., de Albuquerque Lima, T., de Oliveira, A. P. S., do Nascimento Carvalho, L.V., da Rocha Pitta, M.G., de Melo Rêgo, M.J.B. and Pinheiro, I.O. (2019b). Portulaca elatior root contains a trehalose-binding lectin with antibacterial and antifungal activities. Int. J. Biol Macromol., 126, 291-297. doi: 10.1016/j.ijbiomac.2018.12.188.

Silva, P. M., da Silva, B. R., de Oliveira Silva, J. N., de Moura, M. C., Soares, T., Feitosa, A. P. S., Brayner, F. A., Alves, L. C., Paiva, P. M. G., Damborg, P. and Ingmer, H. (2019c) Punica granatum sarcotesta lectin (PgTeL) has antibacterial activity and synergistic effects with antibiotics against β-lactamase-producing Escherichia coli. Int. J. Biol Macromol., 135, 931-939. doi: 0.1016/j.ijbiomac.2019.06.011.

Juan, L. L., Recio, V. G., López, P. J., Juan, T. G., Cordoba-Diaz, M., Cordoba-Diaz, D. (2017). Pharmaceutical applications of lectins. J. Drug Deliv Sci Technol., 42, 126-133. doi: 0.1016/j.ijbiomac.2019.06.011.

Fuente-Núñez, C., Reffuveille, F., Fernández, L., Hancock, R.E. (2013). Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol., 16 (5), 580-589. doi: 10.1016/j.mib.2013.06.013.

Medeiros, M. L. S., de Moura, M. C., Napoleão, T. H., Paiva, P. M. G., Coelho, L. C. B. B., Bezerra, A. C. D. S., da Silva, M. D. C. (2018). Nematicidal activity of a water soluble lectin from seeds of Moringa oleifera. Int. J. Biol Macromol., 108, 782-789. doi: 10.1016/j.ijbiomac.2017.10.167.

Schutter, K., Van Damme, E. J. (2015). Protein-carbohydrate interactions as part of plant defense and animal immunity. Molecules, 20, 9029-9053. doi: 10.3390/molecules20059029.

Souza Carvalho, A., da Silva, M. V., Gomes, F. S., Paiva, P. M. G., Malafaia, C. B., da Silva, T. D., de Melo Vaz, A. F., da Silva, A. G., de Souza Arruda, I. R., Napoleão, T. H., das Graças Carneiro-da-Cunha, M. (2015). Purification, characterization and antibacterial potential of a lectin isolated from Apuleia leiocarpa seeds. Int J Biol Macromol,.75, 402-408. doi: 10.1016/j.ijbiomac.2015.02.001.

Dejea, C. M., Sears, C.L. (2016). Do biofilms confer a pro-carcinogenic state?. Gut microbes, 7 (1), 54-57. doi: 10.1080/19490976.2015.1121363.

Desmond, P., Best, J.P., Morgenroth, E., Derlon, N. (2018). Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms. Water Res., 132, 211-221. doi: 10.1016/j.watres.2017.12.058.

Dias, R. D. O., Machado, L. D. S., Migliolo, L., Franco, O.L. (2015). Insights into animal and plant lectins with antimicrobial activities. Molecules, 20 (1), 519-541. doi: 10.3390/molecules20010519.

Santos Nunes, E., De Souza, M. A. A., de Melo Vaz, A. F., de Sá Santana, G. M., Gomes, F. S., Coelho, L. C. B. B., Paiva, P. M. G., Da Silva, R. M. L., Silva-Lucca, R. A., Oliva, M. L. V., Guarnieri, M. C. (2011). Purification of a lectin with antibacterial activity from Bothrops leucurus snake venom. Comp Biochem Physiol B Biochem Mol Biol., 159 (1), 57-63. doi: 10.1016/j.cbpb.2011.02.001.

Santos Silva, P.M., de Oliveira, W.F., Albuquerque, P.B.S., dos Santos Correia, M. T., Coelho, L. C. B. B. (2019). Insights into anti-pathogenic activities of mannose lectins. Int. J. Biol Macromol., 140, 234-244. doi: 10.1016/j.ijbiomac.2019.08.059.

Eberhardt, L., Kumar, K., Waldmann, H. (2011). Exploring and exploiting biologically relevant chemical space. Curr Drug Targets., 12, 1531-1546. doi: 10.2174/138945011798109482.

Economou, V., Gousia, P. (2015). Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect Drug Resist., 8 (49). doi: 10.2147/IDR.S55778.

Elisha, I. L., Botha, F. S., McGaw, L. J., Eloff, J. N. (2017). The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complement Altern Med., 17 (1), 1-10. doi: 10.1186/s12906-017-1645-z.

Espinosa, R. F., Rumi, V., Marchisio, M., Cejas, D., Radice, M., Vay, C., Barrios, R., Gutkind, G., Di Conza, J. (2018). Fast and easy detection of CMY-2 in Escherichia coli by direct MALDI-TOF mass spectrometry. J. Microbiol Methods., 148, 22-28. doi: 10.1016/j.mimet.2018.04.001.

Fang, Z. Y., Li, D., Li, X. J., Zhang, X., Zhu, Y. T., Li, W. W., Wang, Q. (2016). A single CRD C-type lectin from Eriocheir sinensis (EsLecB) with microbial-binding, antibacterial prophenoloxidase activation and hem-encapsulation activities. Fish Shellfish Immunol., 50, 175-190. doi: 10.1016/j.fsi.2016.01.031.

Feizi, T., Haltiwanger, R. S. (2015). Editorial overview: carbohydrate–protein interactions and glycosylation: glycan synthesis and recognition: finding the perfect partner in a sugar-coated life. Curr Opin Struct Biol., 34, 7-9. doi: 10.1016/j.fsi.2016.01.031.

Fernández, J., Bert, F., Nicolas-Chanoine, M. H. (2016). The challenges of multi-drug-resistance in hepatology. J Hepatol., 65 (5), 1043-1054. doi: 10.1016/j.jhep.2016.08.006.

Fernández-Barat, L., Ferrer, M., De Rosa, F., Gabarrús, A., Esperatti, M., Terraneo, S., Rinaudo, M., Bassi, G.L., Torres, A. (2017). Intensive care unit-acquired pneumonia due to Pseudomonas aeruginosa with and without multidrug resistance. J. Infect., 74 (2), 142-152. doi: 10.1016/j.jinf.2016.11.008.

Ferreira, R., Napoleão, T. H., Santos, A. F., Sá, R. A., Carneiro‐da‐Cunha, M. G., Morais, M. M. C., Silva‐Lucca, R. A., Oliva, M. L. V., Coelho, L. C. B. B., Paiva, P.M. (2011). Coagulant and antibacterial activities of the water‐soluble seed lectin from Moringa oleifera. Lett Appl Microbiol., 53 (2), 186-192. doi: 10.1111/j.1472-765X.2011.03089.x.doi: doi: 10.1111/j.1472-765X.2011.03089.x.

Ferreira, G. R. S., Brito, J. S., Procópio, T. F., Santos, N. D. L., Lima, B. J. R. C., Coelho, L. C. B. B., Navarro, D. M. A. F., Paiva, P. M. G., Soares, T., Moura, M. C., Napoleão, T. H. (2018). Antimicrobial potential of Alpinia purpurata lectin (ApuL): Growth inhibitory action, synergistic effects in combination with antibiotics, and antibiofilm activity. Microb Pathog., 124, 152-162. doi: 10.1111/j.1472-765X.2011.03089.x.

Fisher, R. A., Gollan, B., Helaine, S. (2017). Persistent bacterial infections and persister cells. Nat Rev Microbiol., 15 (8), 453. doi: 10.1038/nrmicro.2017.42.

Founou, R. C., Founou, L. L., Essack, S. Y. (2017). Clinical and economic impact of antibiotic resistance in developing countries: a systematic review and meta-analysis. PloS one, 12 (12), p.e0189621. doi: 10.1371/journal.pone.0189621.

Gautam, A. K., Srivastava, N., Nagar, D. P., Bhagyawant, S. S. (2018). Biochemical and functional properties of a lectin purified from the seeds of Cicer arietinum L. Biotech., 8 (6), 1-11. doi: 10.1007/s13205-018-1272-5.

Gomes, F. S., Procópio, T. F., Napoleão, T. H., Coelho, L. C. B. B., Paiva, P. M. G. (2013). Antimicrobial lectin from Schinus terebinthifolius leaf. J. Appl Microbiol., 114 (3), 672-679. doi: 10.1111/jam.12086.

Greene, C., Wu, J., Rickard, A. H. and Xi, C. (2016). Evaluation of the ability of Acinetobacter baumannii to form biofilms on six different biomedical relevant surfaces. Lett Appl Microbiol., 63 (4), 233-239. doi: 10.1111/lam.12627.

Harkins, C. P., Pichon, B., Doumith, M., Parkhill, J., Westh, H., Tomasz, A., de Lencastre, H., Bentley, S.D., Kearns, A.M., Holden, M. T. (2017). Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 18 (1), 1-11. doi: 10.1186/s13059-017-1252-9.

Hasan, I., Ozeki, Y., Kabir, S. R. (2014). Purification of a novel chitin-binding lectin with antimicrobial and antibiofilm activities from a Bangladeshi cultivar of potato (Solanum tuberosum). Indian J. Biochem Bio., 51, 142-148.

Hasan, T. H., AL-Harmoosh, R. A. (2020). Mechanisms of Antibiotics Resistance in Bacteria. Sys Rev Pharm., 11 (6), 817-823. doi: 10.31838/srp.2020.6.118.

Horuz, E., Maskan, M. (2015). Hot air and microwave drying of pomegranate (Punica granatum L.) arils. J. Food Sci. Technol., 52 (1), 285-293. doi: 10.1007/s13197-013-1032-9.

Hurlow, J., Couch, K., Laforet, K., Bolton, L., Metcalf, D., Bowler, P. (2015). Clinical biofilms: a challenging frontier in wound care. Adv Wound Care., 4 (5), 295-301. doi: 10.1089/wound.2014.0567.

Iordache, F., Ionita, M., Mitrea, L. I., Fafaneata, C., Pop, A. (2015). Antimicrobial and antiparasitic activity of lectins. Curr Pharm Biotechnol., 16 (2), 152-161. doi: 10.2174/138920101602150112151907.

Islam, B., Khan, A. U. (2012). Lectins: to combat infections. Protein Purif., 1, 167-188. doi: 10.2174/138920101602150112151907.

Jin, X., Lee, Y. J., Hong, S. H. (2019). Canavalia ensiformis‐derived lectin inhibits biofilm formation of enterohemorrhagic Escherichia coli and Listeria monocytogenes. J. Appl Microbiol., 126 (1), 300-310. doi: 10.1111/jam.14108.

Karnchanatat, A. (2012). Antimicrobial activity of lectins from plants in: Bobbarala, V. (Ed.), Antimicrobial agents. BoD–Books on Demand, 2012., Rijeka, pp.145-178. doi: 10.5772/33456.

Kellenberger, E., Hofmann, A., Quinn, R.J. (2011). Similar interactions of natural products with biosynthetic enzymes and therapeutic targets could explain why nature produces such a large proportion of existing drugs. Nat Prod Rep., 28 (9), 1483-1492. doi: 10.1039/C1NP00026H.

Klafke, G. B., Borsuk, S., Gonçales, R. A., Arruda, F. V. S., Carneiro, V. A., Teixeira, E. H., Coelho da Silva, A. L., Cavada, B. S., Dellagostin, O. A., Pinto, L.S. (2013). Inhibition of initial adhesion of oral bacteria through a lectin from Bauhinia variegata L. var. variegata expressed in Escherichia coli. J. Appl Microbiol., 115 (5), 1222-1230. doi: 10.1111/jam.12318.

Lannoo, N.,Van Damme, E. J. (2014). Lectin domains at the frontiers of plant defense. Front. Plant Sci., 5, 397. doi: 10.3389/fpls.2014.00397.

Limoli, D. H., Jones, C. J., Wozniak, D. J. (2015). Bacterial extracellular polysaccharides in biofilm formation and function, in: Ghannoum, M., Parsek, M., Whiteley, M., Mukherjee, P. K. (Eds.), Microbial biofilms. John Wiley & Sons. Microbial Biofilms. doi: 10.1128/9781555817466.ch11.

Montanaro, L., Ravaioli, S., Ruppitsch, W., Campoccia, D., Pietrocola, G., Visai, L., Speziale, P., Allerberger, F., Arciola, C. R. (2016). Molecular characterization of a prevalent ribocluster of methicillin-sensitive Staphylococcus aureus from orthopedic implant infections. Correspondence with MLST CC30. Front Cell Infect Microbiol., 6 (8). doi: 10.1128/9781555817466.ch11.

Moradali, M .F., Ghods, S., Rehm, B. H. (2017). Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol., 7, 39. doi: 10.3389/fcimb.2017.00039.

Moura, M. C., Trentin, D. S., Napoleão, T. H., Primon‐Barros, M., Xavier, A. S., Carneiro, N. P., Paiva, P. M. G., Macedo, A. J., Coelho, L. C. B. B. (2017a). Multi‐effect of the water‐soluble Moringa oleifera lectin against Serratia marcescens and Bacillus sp.: antibacterial, antibiofilm and anti‐adhesive properties. J. Appl Microbiol., 123, 861-874. doi: 10.1111/jam.13556.

Moura, M. C., Napoleão, T. H., Paiva, P. M., Coelho, L. C. B. B. (2017b). Bacterial biofilms: Structure, development and potential of plant compounds for alternative control, in: Berhardt, L.V (Ed.), Advances in medicine and biology (pp.1-34). New York: Nova Biomedical.

Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S., Pardesi, K. R. (2019). Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol., 10, 539. doi: 10.3389/fmicb.2019.00539.

Nicolaou, K. C., Hale, C. R., Nilewski, C., Ioannidou, H. A. (2012). Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance. Chem Soc Rev., 41 (15), 5185-5238. doi: 10.1039/C2CS35116A.

OECD. (2018). Stemming the Superbug Tide: Just A Few Dollars More, OECD Health Policy Studies. OECD Publishing, Paris.

Paiva, P. M. G., Gomes, F. S., Napoleão, T. H., Sá, R. A., Correia, M. T. S., Coelho, L. C. B. B. (2010). Antimicrobial activity of secondary metabolites and lectins from plants, in: Méndez-Villas, A (Ed.), Current research, technology and education topics in applied microbiology and microbial biotechnology. FORMATEX, Norristown, pp.396-406.

Petnual, P., Sangvanich, P., Karnchanatat, A. (2010). A lectin from the rhizomes of turmeric (Curcuma longa L.) and its antifungal, antibacterial, and α-glucosidase inhibitory activities. Food Sci. Biotechnol., 19 (4), 907-916. doi: 10.1007/s10068-010-0128-5.

Procópio, T. F., Moura, M. C., Albuquerque, L. P., Gomes, F. S., Santos, N. D., Coelho, L. C. B. B., Pontual, E. V., Paiva, P. M., Napoleão, T. H. (2017a). Antibacterial lectins: action mechanisms, defensive roles and biotechnological potential, in: Collins, E. (Ed.), Antibacterials: synthesis, properties and biological activities (pp.69-90). New York: Nova Science Publisher.

Procópio, T. F., de Siqueira Patriota, L. L., de Moura, M. C., da Silva, P. M., de Oliveira, A. P. S., do Nascimento Carvalho, L. V., de Albuquerque Lima, T., Soares, T., da Silva, T. D., Coelho, L. C. B. B., da Rocha Pitta, M. G. (2017b). CasuL: a new lectin isolated from Calliandra surinamensis leaf pinnulae with cytotoxicity to cancer cells, antimicrobial activity and antibiofilm effect. Int. J. Biol Macromol., 98, 419-429. doi: 10.1016/j.ijbiomac.2017.02.019.

Rotondo, C. M., Wright, G.D. (2017). Inhibitors of metallo-β-lactamases. Curr Opin Microbiol., 39, 96-105. doi: 10.1016/j.mib.2017.10.026.

Saha, R. K., Tuhin, S. H. M., Jahan, N., Roy, A., Roy, P. (2014). Antibacterial and antioxidant activities of a food lectin isolated from the seeds of Lablab purpureus. AJEthno, 1 (1), 8-17.

Saha, R. K., Acharya, S., Jamiruddin, M., Roy, P., Islam, M. M. S., Shovon, S. S. H. (2014). Antimicrobial effects of a crude plant lectin isolated from the stem of Tinospora tomentosa. J. Phytopharm., 3, 44-51.

Santajit, S., Indrawattana, N. (2016). Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int., 2016. doi: 10.1155/2016/2475067.

Shakya, A. K. (2016). Medicinal plants: Future source of new drugs. Int. J. Herb. Med., 4 (4), 59-64. doi: 10.13140/RG.2.1.1395.6085.

Sharma, U., Vipra, A., Channabasappa, S. (2018). Phage-derived lysins as potential agents for eradicating biofilms and persisters. Drug Discov. Today., 23 (4), 848-856. doi: 10.1016/j.drudis.2018.01.026.

Silva, K.C.D., Lincopan, N. (2012). Epidemiologia das betalactamases de espectro estendido no Brasil: impacto clínico e implicações para o agronegócio. J. Bras Patol Med Lab., 48, 91-99. doi: 10.1590/S1676-24442012000200004.

Silva, P. M., Napoleão, T. H., Silva, L. C., Fortes, D. T., Lima, T. A., Zingali, R. B., Pontual, E. V., Araújo, J. M., Medeiros, P. L., Rodrigues, C. G., Gomes, F.S. (2016). The juicy sarcotesta of Punica granatum contains a lectin that affects growth, survival as well as adherence and invasive capacities of human pathogenic bacteria. J. Funct. Foods., 27, 695-702. doi: 10.1016/j.jff.2016.10.015.

Sivaji, N., Suguna, K., Surolia, A., Vijayan, M. (2019). Structural biology of plant lectins and macromolecular crystallography in India. Curr. Sci., 116 (9), 1490-1505. doi: 10.18520/cs/v116/i9/1490-1505.

Slobodníková, L., Fialová, S., Rendeková, K., Kováč, J., Mučaji, P. (2016). Antibiofilm activity of plant polyphenols. Molecules, 21 (12), 1717. doi: 10.3390/molecules21121717.

Streeter, K., Katouli, M. (2016). Pseudomonas aeruginosa: A review of their Pathogenesis and Prevalence in Clinical Settings and the Environment. Infection Epidemiology and Microbiology, 2, 25-32. doi: 10.18869/modares.iem.2.1.25.

Sultana, M., Shakil Ahmed, F. R., Alam, M.T. (2019). Identification of lectins from the seeds of Bangladeshi plants Sesbania bispinosa and Senna occidentalis by hemagglutination assay. Asian J. Green Chem., 3 (4), 518-524. doi: 10.33945/SAMI/AJGC/2019.4.8.

Tacconelli, E., Sifakis, F., Harbarth, S., Schrijver, R., van Mourik, M., Voss, A., Sharland, M., Rajendran, N.B., Rodríguez-Baño, J., Bielicki, J., de Kraker, M. (2018a). Surveillance for control of antimicrobial resistance. Lancet Infect Dis., 18 (3), e99-e106. doi: 10.1016/S1473-3099(17)30485-1.

Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D.L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M. (2018b). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis., 18 (3), 318-327. doi: 10.1016/S1473-3099(17)30753-3.

Torres, M. É. L. M., Brandão-Costa, R. M. P., de Oliveira Santos, J. V., Cavalcanti, I. M. F., da Silva, M. M., Nascimento, T. P., de Oliveira Nascimento, C., Porto, A.L.F. (2019). DdeL, a novel thermostable lectin from Dypsis decaryi seeds: Biological properties. Process Biochem., 86, 169-176. doi: 10.1016/j.procbio.2019.07.021.

Trentin, D.S., Silva, D. B., Amaral, M. W., Zimmer, K. R., Silva, M. V., Lopes, N. P., Giordani, R. B., Macedo, A. J. (2013). Tannins possessing bacteriostatic effect impair Pseudomonas aeruginosa adhesion and biofilm formation. PloS one. 8 (6), e66257. doi: 10.1371/journal.pone.0066257.

Ullah, A., Hossain, S., Sarkar, B., Nafi-Ur-Rahman, M., Islam, S. (2019). Phytochemicals and metabolites as antimicrobial agents from medicinal plants of Bangladesh: A review. PharmaTutor, 7 (6), 1-11.

Van Wyk, B. E. and Wink, M. (2018). Medicinal plants of the world. CABI.

World Health Organization (2018). Global tuberculosis report 2018. World Health Organization.

Wu, H., Moser, C., Wang, H. Z., Høiby, N. and Song, Z. J. (2015). Strategies for combating bacterial biofilm infections. Int J Oral Sci., 7 (1), 1-7. doi: 10.1038/ijos.2014.65.

Wunderink, R. G., Waterer, G. (2017). Advances in the causes and management of community acquired pneumonia in adults. BMJ, 358. doi: 10.1136/bmj.j2471.

Yau, T., Dan, X., Ng, C. C. W., Ng, T. B. (2015). Lectins with potential for anti-cancer therapy. Molecules., 20 (3), 3791-3810. doi: 10.3390/molecules20033791.

Zacchino, S. A., Butassi, E., Cordisco, E., Svetaz, L. A. (2017). Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms. Phytomedicine, 37, 14-26. doi: 10.1016/j.phymed.2017.10.021.

Published

20/11/2021

How to Cite

SOUZA, Z. N. de .; SANTOS, J. V. de O. .; DUARTE NETO, J. M. W. .; SILVA, W. R. C. da .; FERREIRA, Y. L. A. .; CAVALCANTI, I. M. F. Antibacterial and antibiofilm lectins from plants – a review. Research, Society and Development, [S. l.], v. 10, n. 15, p. e70101522595, 2021. DOI: 10.33448/rsd-v10i15.22595. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22595. Acesso em: 6 jan. 2025.

Issue

Section

Health Sciences