Inhibitory effect of di-hydrojasmone against strains of Candida spp. fluconazole resistant

Authors

DOI:

https://doi.org/10.33448/rsd-v10i15.23110

Keywords:

Candidiasis; Monoterpene; Natural products; Antifungal.

Abstract

Introduction: Candidiasis is related to a wide variety of clinical manifestations that are expressed from skin and mucosal infections to systemic infection. The latter being associated with a high global mortality rate, ranging from 36% to 63% in different groups of patients. The therapy of invasive fungal infections is limited, as there are only three classes of conventional drugs used. In this scenario, strategies for the rational use of antifungal agents and the search for new therapeutic alternatives are necessary. Objective: To evaluate the in vitro antifungal activity of the monoterpene dihydrojasmone against fluconazole resistant strains of Candida albicans and Candida parapsilosis. Methodology: The minimal inhibitory (MIC) and minimal fungicidal (MFC) concentrations were determined by the microdilution method. It was later observed whether the antifungal action of dihydrojasmone occurs via the cell wall (sorbitol assay) or via membrane (exogenous ergosterol assay). Results: Dihydrojasmone had a MIC between 128 - 256 µg/mL and MFC had the same MIC values, respectively. In the assay with exogenous ergosterol, the MIC of dihydrojasmone increased in the presence of exogenous ergosterol, suggesting that the mechanism of action of monoterpene occurs through its binding to ergosterol present in the membrane. There was no change regarding the use of sorbitol. Conclusion: Based on these results, the present study demonstrates that dihydrojasmone has strong antifungal activity, and suggests that this activity is related to its binding to ergosterol in the fungal membrane. Therefore, dihydrojasmone proves to be a promising bioproduct in the search for alternatives for the treatment of candidiasis.

References

Antinori, S., Milazzo, L., Sollima, S., Galli, M., & Corbellino, M. (2016). Candidemia and invasive candidiasis in adults: A narrative review. In European Journal of Internal Medicine 34, 21–28. Elsevier B.V. https://doi.org/10.1016/j.ejim.2016.06.029

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. In Journal of Pharmaceutical Analysis (Vol. 6, Issue 2, pp. 71–79). Xi’an Jiaotong University. https://doi.org/10.1016/j.jpha.2015.11.005

Chang, Y. L., Yu, S. J., Heitman, J., Wellington, M., & Chen, Y. L. (2017). New facets of antifungal therapy. In Virulence. 8(2), 222–236. Taylor and Francis Inc. https://doi.org/10.1080/21505594.2016.1257457

CLSI. (2008). M27-A3 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Third Edition. www.clsi.org.

Escalante, A., Gattuso, M., Pérez, P., & Zacchino, S. (2008). Evidence for the Mechanism of Action of the Antifungal Phytolaccoside B Isolated from Phytolacca tetramera Hauman. Journal of Natural Products, 71(10). https://doi.org/10.1021/np070660i

Farias, L. A. B. G., Santos, A. P. de S., & Damasceno, L. S. (2021). Candidemia associada à infecção por SARS‐COV‐2: um relato de dois casos. The Brazilian Journal of Infectious Diseases, 25, 101385. https://doi.org/10.1016/J.BJID.2020.101385

Frost, D. J., Brandt, K. D., Cugier, D., & Goldman, R. (1995). A Whole-Cell Candida albicans Assay for the Detection of Inhibitors towards Fungal Cell Wall Synthesis and Assembly. The Journal of Antibiotics, 306–310. https://doi.org/10.7164/antibiotics.48.306

Heard, S. C., Wu, G., & Winter, J. M. (2021). Antifungal natural products. Current Opinion in Biotechnology, 69, 232–241. https://doi.org/10.1016/J.COPBIO.2021.02.001

Lass-Flörl, C., Samardzic, E., & Knoll, M. (2021). Serology anno 2021—fungal infections: from invasive to chronic. Clinical Microbiology and Infection, 27(9), 1230–1241. https://doi.org/10.1016/J.CMI.2021.02.005

Musiol, R., & Kowalczyk, W. (2012). Azole Antimycotics - A Highway to New Drugs or a Dead End? Current Medicinal Chemistry, 19(9). https://doi.org/10.2174/092986712799462621

Ncube N. S., Afolayan A. J., & Okoh A. I. (2008). Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. African Journal of Biotechnology, 7(12), 1797–1806. http://www.academicjournals.org/AJB

Oliveira, C. C. A. de, & Santos, J. S. (2021). Compostos ativos de capim-cidreira (Cymbopogon citratus): uma revisão. Research, Society and Development, 10(12), e263101220281. https://doi.org/10.33448/rsd-v10i12.20281

Pinto, Â. V. (2019). Potencial modulador de monoterpenos sobre a sensibilidade de dermatófitos a terbinafina.

Sartoratto, A., Lúcia, A., Machado, M., Delarmelina, C., Glyn, ;, Figueira, M., Marta, ;, Duarte, C. T., Vera, & Rehder, L. G. (2004). Composition And Antimicrobial Activity Of Essential Oils From Aromatic Plants Used In Brazil. Brazilian Journal of Microbiology, 35, 275–280.

Scorzoni, L., Sangalli-Leite, F., de Lacorte Singulani, J., de Paula e Silva, A. C. A., Costa-Orlandi, C. B., Fusco-Almeida, A. M., & Mendes-Giannini, M. J. S. (2016). Searching new antifungals: The use of in vitro and in vivo methods for evaluation of natural compounds. Journal of Microbiological Methods, 123, 68–78. https://doi.org/10.1016/J.MIMET.2016.02.005

Siddiqui, Z. N., Farooq, F., Musthafa, T. N. M., Ahmad, A., & Khan, A. U. (2013). Synthesis, characterization and antimicrobial evaluation of novel halopyrazole derivatives. Journal of Saudi Chemical Society, 17(2), 237–243. https://doi.org/10.1016/J.JSCS.2011.03.016

Silva Filho, C. A. M., Cavalcanti, A. C. F., Amorim, C. M., Neves, R. P., & Neves, H. J. P. (2017). Produção de terpenoides com atividade antifungica frente à candida sp capítulo produção de terpenoides com atividade antifungica frente à candida SP. http://repositorio.asces.edu.br/handle/123456789/1246

Silva, N. L., Araújo, Í. P. C., Batista, M. R. F., Santos, T. B. A., Fernando, W. L., & Amaral, F. R. (2017). Determinação da atividade antioxidante e teor de flavonoides totais equivalentes em quercetina em folhas de Cymbopogon citratus (d.c.) stapf e Melissa officinalis lam. Conexão Ciência (Online), 12(1), 46–53. https://doi.org/10.24862/cco.v12i1.499

Sousa, J. P. de, Medeiros, C. I. S., Pereira, F. de O., Guerra, F. Q. S., Oliveira Filho, A. A. de, & Lima, E. de O. (2020). Estudo do potencial antifúngico e do mecanismo de ação do timol contra cepas de Candida parapsilosis resistentes ao fluconazol e a anfotericina B. Revista de Ciências Médicas e Biológicas, 19(3), 489. https://doi.org/10.9771/cmbio.v19i3.32901

Svetaz, L., Zuljan, F., Derita, M., Petenatti, E., Tamayo, G., Cáceres, A., Cechinel Filho, V., Giménez, A., Pinzón, R., Zacchino, S. A., & Gupta, M. (2010). Value of the ethnomedical information for the discovery of plants with antifungal properties. A survey among seven Latin American countries. Journal of Ethnopharmacology, 127(1), 137–158. https://doi.org/10.1016/J.JEP.2009.09.034

Vieira, A. J. H., & Santos, J. I. dos. (2017). Mecanismos de resistência de Candida albicans aos antifúngicos anfotericina B, fluconazol e caspofungina. Revista Brasileira de Análises Clínicas, 49(3). https://doi.org/10.21877/2448-3877.201600407

Published

29/11/2021

How to Cite

LIMA, L. de O. e; SILVA, L. A. .; FONSECA, M. C.; DINIZ-NETO, H.; LIMA, E. de O.; BARBOSA FILHO, J. M.; TAVARES, J. F.; SILVA-ROCHA, W. P. da; GUERRA, F. Q. S. Inhibitory effect of di-hydrojasmone against strains of Candida spp. fluconazole resistant. Research, Society and Development, [S. l.], v. 10, n. 15, p. e440101523110, 2021. DOI: 10.33448/rsd-v10i15.23110. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23110. Acesso em: 6 jan. 2025.

Issue

Section

Health Sciences