Efecto inhibidor de la dihidrojasmona contra Candida spp. resistente al fluconazol

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i15.23110

Palabras clave:

Candidiasis; Monoterpeno; Productos naturales; Antifúngico.

Resumen

Introducción: La candidiasis se relaciona con una amplia variedad de manifestaciones clínicas que se expresan desde infecciones cutáneas y mucosas hasta infecciones sistémicas. Esta última se asocia a una alta tasa de mortalidad global, que oscila entre el 36% y el 63% en diferentes grupos de pacientes. La terapia de las infecciones fúngicas invasivas es limitada ya que solo se utilizan tres clases de fármacos convencionales. En este escenario, son necesarias estrategias para el uso racional de agentes antifúngicos y la búsqueda de nuevas alternativas terapéuticas. Objetivo: Evaluar la actividad antifúngica in vitro de la monoterpeno dihidrojasmona frente a cepas de Candida albicans y Candida parapsilosis resistentes al fluconazol. Metodología: Las concentraciones mínimas inhibitorias (CMI) y mínimas fungicidas (CMF) se determinaron mediante el método de microdilución. Posteriormente se observó si la acción antifúngica de la dihidrojasmona se produce a través de la pared celular (ensayo de sorbitol) o mediante la membrana (ensayo de ergosterol exógeno). Resultados: La dihidrojasmona tuvo una CMI entre 128 - 256 µg / mL y CMF tuvo los mismos valores de CMI, respectivamente. En el ensayo con ergosterol exógeno, la CMI de dihidrojasmona aumentó en presencia de ergosterol exógeno, lo que sugiere que el mecanismo de acción del monoterpeno se produce a través de su unión al ergosterol presente en la membrana. No hubo cambios con respecto al uso de sorbitol. Conclusión: Con base en estos resultados, el presente estudio demuestra que la dihidrojasmona tiene una fuerte actividad antifúngica y sugiere que esta actividad está relacionada con su unión al ergosterol en la membrana fúngica. Por tanto, la dihidrojasmona resulta ser un bioproducto prometedor en la búsqueda de alternativas para el tratamiento de la candidiasis.

Citas

Antinori, S., Milazzo, L., Sollima, S., Galli, M., & Corbellino, M. (2016). Candidemia and invasive candidiasis in adults: A narrative review. In European Journal of Internal Medicine 34, 21–28. Elsevier B.V. https://doi.org/10.1016/j.ejim.2016.06.029

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. In Journal of Pharmaceutical Analysis (Vol. 6, Issue 2, pp. 71–79). Xi’an Jiaotong University. https://doi.org/10.1016/j.jpha.2015.11.005

Chang, Y. L., Yu, S. J., Heitman, J., Wellington, M., & Chen, Y. L. (2017). New facets of antifungal therapy. In Virulence. 8(2), 222–236. Taylor and Francis Inc. https://doi.org/10.1080/21505594.2016.1257457

CLSI. (2008). M27-A3 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Third Edition. www.clsi.org.

Escalante, A., Gattuso, M., Pérez, P., & Zacchino, S. (2008). Evidence for the Mechanism of Action of the Antifungal Phytolaccoside B Isolated from Phytolacca tetramera Hauman. Journal of Natural Products, 71(10). https://doi.org/10.1021/np070660i

Farias, L. A. B. G., Santos, A. P. de S., & Damasceno, L. S. (2021). Candidemia associada à infecção por SARS‐COV‐2: um relato de dois casos. The Brazilian Journal of Infectious Diseases, 25, 101385. https://doi.org/10.1016/J.BJID.2020.101385

Frost, D. J., Brandt, K. D., Cugier, D., & Goldman, R. (1995). A Whole-Cell Candida albicans Assay for the Detection of Inhibitors towards Fungal Cell Wall Synthesis and Assembly. The Journal of Antibiotics, 306–310. https://doi.org/10.7164/antibiotics.48.306

Heard, S. C., Wu, G., & Winter, J. M. (2021). Antifungal natural products. Current Opinion in Biotechnology, 69, 232–241. https://doi.org/10.1016/J.COPBIO.2021.02.001

Lass-Flörl, C., Samardzic, E., & Knoll, M. (2021). Serology anno 2021—fungal infections: from invasive to chronic. Clinical Microbiology and Infection, 27(9), 1230–1241. https://doi.org/10.1016/J.CMI.2021.02.005

Musiol, R., & Kowalczyk, W. (2012). Azole Antimycotics - A Highway to New Drugs or a Dead End? Current Medicinal Chemistry, 19(9). https://doi.org/10.2174/092986712799462621

Ncube N. S., Afolayan A. J., & Okoh A. I. (2008). Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. African Journal of Biotechnology, 7(12), 1797–1806. http://www.academicjournals.org/AJB

Oliveira, C. C. A. de, & Santos, J. S. (2021). Compostos ativos de capim-cidreira (Cymbopogon citratus): uma revisão. Research, Society and Development, 10(12), e263101220281. https://doi.org/10.33448/rsd-v10i12.20281

Pinto, Â. V. (2019). Potencial modulador de monoterpenos sobre a sensibilidade de dermatófitos a terbinafina.

Sartoratto, A., Lúcia, A., Machado, M., Delarmelina, C., Glyn, ;, Figueira, M., Marta, ;, Duarte, C. T., Vera, & Rehder, L. G. (2004). Composition And Antimicrobial Activity Of Essential Oils From Aromatic Plants Used In Brazil. Brazilian Journal of Microbiology, 35, 275–280.

Scorzoni, L., Sangalli-Leite, F., de Lacorte Singulani, J., de Paula e Silva, A. C. A., Costa-Orlandi, C. B., Fusco-Almeida, A. M., & Mendes-Giannini, M. J. S. (2016). Searching new antifungals: The use of in vitro and in vivo methods for evaluation of natural compounds. Journal of Microbiological Methods, 123, 68–78. https://doi.org/10.1016/J.MIMET.2016.02.005

Siddiqui, Z. N., Farooq, F., Musthafa, T. N. M., Ahmad, A., & Khan, A. U. (2013). Synthesis, characterization and antimicrobial evaluation of novel halopyrazole derivatives. Journal of Saudi Chemical Society, 17(2), 237–243. https://doi.org/10.1016/J.JSCS.2011.03.016

Silva Filho, C. A. M., Cavalcanti, A. C. F., Amorim, C. M., Neves, R. P., & Neves, H. J. P. (2017). Produção de terpenoides com atividade antifungica frente à candida sp capítulo produção de terpenoides com atividade antifungica frente à candida SP. http://repositorio.asces.edu.br/handle/123456789/1246

Silva, N. L., Araújo, Í. P. C., Batista, M. R. F., Santos, T. B. A., Fernando, W. L., & Amaral, F. R. (2017). Determinação da atividade antioxidante e teor de flavonoides totais equivalentes em quercetina em folhas de Cymbopogon citratus (d.c.) stapf e Melissa officinalis lam. Conexão Ciência (Online), 12(1), 46–53. https://doi.org/10.24862/cco.v12i1.499

Sousa, J. P. de, Medeiros, C. I. S., Pereira, F. de O., Guerra, F. Q. S., Oliveira Filho, A. A. de, & Lima, E. de O. (2020). Estudo do potencial antifúngico e do mecanismo de ação do timol contra cepas de Candida parapsilosis resistentes ao fluconazol e a anfotericina B. Revista de Ciências Médicas e Biológicas, 19(3), 489. https://doi.org/10.9771/cmbio.v19i3.32901

Svetaz, L., Zuljan, F., Derita, M., Petenatti, E., Tamayo, G., Cáceres, A., Cechinel Filho, V., Giménez, A., Pinzón, R., Zacchino, S. A., & Gupta, M. (2010). Value of the ethnomedical information for the discovery of plants with antifungal properties. A survey among seven Latin American countries. Journal of Ethnopharmacology, 127(1), 137–158. https://doi.org/10.1016/J.JEP.2009.09.034

Vieira, A. J. H., & Santos, J. I. dos. (2017). Mecanismos de resistência de Candida albicans aos antifúngicos anfotericina B, fluconazol e caspofungina. Revista Brasileira de Análises Clínicas, 49(3). https://doi.org/10.21877/2448-3877.201600407

Publicado

29/11/2021

Cómo citar

LIMA, L. de O. e; SILVA, L. A. .; FONSECA, M. C.; DINIZ-NETO, H.; LIMA, E. de O.; BARBOSA FILHO, J. M.; TAVARES, J. F.; SILVA-ROCHA, W. P. da; GUERRA, F. Q. S. Efecto inhibidor de la dihidrojasmona contra Candida spp. resistente al fluconazol. Research, Society and Development, [S. l.], v. 10, n. 15, p. e440101523110, 2021. DOI: 10.33448/rsd-v10i15.23110. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23110. Acesso em: 4 jul. 2024.

Número

Sección

Ciencias de la salud